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ABSTACT: The main objective of this paper is to develop a method to deal with the thermo-mechanical 
analysis of incompressible, functionally graded hollow spherical bodies. The considered spherical 
components are subjected to combined thermal and mechanical loads and the equations of the 
displacement and stress fields are derived. The computations are executed when the distribution of 
material properties are given as power functions of the radial coordinate. The developed solutions are 
verified by finite element simulations. 
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1. INTRODUCTION 
Functionally graded materials are relatively new, advanced materials in which the material 
composition and parameters continuously vary with position. The gradual change between the 
material phases differentiates the behavior of these materials from the behavior of homogeneous 
and traditional composite materials. Functionally graded materials possess a lot of advantages 
which make them ideal choices in many engineering problems, for example space structures, 
cutting tools, furnace liners or fusion reactors. These materials have excellent mechanical 
properties, they are heat resistant and they take advantage of certain desirable features of each of 
the constituent phases. 
The analytical solutions for the stress and displacement fields within functionally graded 
spherical bodies and circular cylinders are given by Lutz and Zimmerman in [1], [2]. Their papers 
considered spherical and cylindrical bodies under radial thermal load with linear gradient. The 
work of Tutuncu and Ozturk [3] gives closed-form analytical solutions for the stress field in 
functionally graded spherical bodies in case of internal pressure alone.  
A study by Bayat, Mahdi and Torabi [4] presents an analytical solution to obtain the normal and 
effective stresses within thick spherical pressure vessels made of functionally graded materials 
subjected to axisymmetric mechanical and thermal loading. The properties of the material of the 
vessel are assumed to be graded in the radial direction based on power-law functions of the radial 
coordinate but the Poisson ratio has constant value. 
In this paper the solution for a thermoelastic problem of a functionally graded hollow sphere is 
presented which works in the case of incompressible materials. In the last section we will further 
investigate the case, when the material parameters and the temperature field are power functions 
of the radial coordinate. 
A thick spherical vessel will be considered in Orφϑ spherical coordinate system as we can see in 
Figure 1. The inner radius is denoted by R1, the outer radius is R2. The spherical body is radially 
graded, therefore the material properties are vary along the radial coordinate r. The thermal 
loading is a steady-state temperature difference field T=T(r)=t(r)-t0 where t is the absolute 
temperature and t0 is the reference temperature at which the stresses are zero if the spherical 
body is undeformed and the mechanical loads p1 and p2 are constant pressures exerted on the 
inner and outer boundary surfaces. 



ANNALS of Faculty Engineering Hunedoara – International Journal of Engineering 

104 | Fascicule 2 

Our aim is to derive a method to calculate the 
displacement field and normal stresses within an 
incompressible spherical body.  
2. FORMULATION OF THE PROBLEM 
In case of incompressible materials the Poisson ratio 
ν=0.5 and for the Young modulus E=3G. The stress-
strain relations for spherical bodies of the mechanical 
loading have the following forms [5], [6] 
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where σr, σφ, σϑ are the radial and tangential normal 
stresses, εmr, εmφ, εmϑ denote the normal strains from 
mechanical loads and  
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The normal strains can be written as the sum of its mechanical and thermal parts 
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For the trace of the strain tensor the following relation can be written  
2 3r r Tϕ ϑ ϕε ε ε ε ε ε α= + + = + =                                                 (7) 

The displacement-strain relations of spherical bodies are 
( ) ( )( ) , ( ) ( ) .r
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The combination of Eqs. (7-8) leads to  
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The solution of Eqs. (7), (9) gives the function of radial displacement field 
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where the following notation is introduced 
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The substitution of Eq. (10) to the expressions of the normal strains Eqs. (5), (6) leads to the 
following formulae: 
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In the case of hollow spherical bodies the equilibrium equation can be expressed as 
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The combination of Eqs. (14) with Eqs. (1-2, 12-13) leads to  

 
Figure 1. The sketch of the problem 
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The solution of Eq. (15) gives the function of the radial normal stress 

1 1 1

1
1 24 4

( ) ( ) ( ) ( ) ( ) ( )( ) 12 4 4 .
r r r

r
R R R

E F E E Tr d C d d Cρ ρ ρ ρ α ρ ρσ ρ ρ ρ
ρ ρ ρ

= + − +∫ ∫ ∫             (16) 

The unknown constantsC1 and C2 can be calculated from the stress boundary conditions: 

1 1 2 2( ), ( ),r rp R p Rσ σ= − = −                          (17) 
Form Eq. (17) it follows that  
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The tangential normal stresses can be calculated from Eqs. (14-16) 
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3. EXAMPLE 
For the numerical example the following functions will be used to describe the distribution of the 
material properties and temperature field within the functionally graded sphere: 
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The following data will be used for the computations: 
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Figure 2 shows the curves of the radial normal stresses by three different values of power indexes 
m1=m2=m=(0, 0.2, 2). The tangential normal stresses can be seen in Figure 3.  

 
Figure 2. The plots of the radial normal stresses 
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Figure 3. The plots of the tangential normal stresses 

 
Figure 4. The comparison of the results for 

displacement field when m=2. 
Next the solutions will be compared with finite element simulation. In the FE model the 
axisymmetric functionally graded sphere is modeled as a multilayered body with n=20 
homogeneous spherical layers, as presented in [7]. In this case the displacement field can be seen 
in Figure 4. The results for the normal stresses are identical to the previously presented plots. 
4. CONCLUSIONS 
A solution was presented to determine the normal stresses and displacements for a thermoelastic 
problem of incompressible, functionally graded hollow spherical bodies subjected to thermal and 
mechanical loads. Numerical examples are presented when the distribution of material 
parameters are given as power functions of the radial coordinate. The developed solutions are 
verified by finite element models. 
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