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ABSTACT: Approximate analytical solutions of Boussinesq equation are widely used for approximation of 
subsurface seepage flow in confined and unconfined aquifers under varying hydrological conditions. In 
this paper, we use a 2-dimensional linearized Boussinesq equation to simulate the water table fluctuations 
in an isotropic aquifer overlying a semipervious bed under multiple localized recharge and withdrawal. 
The mathematical model is solved analytically using finite Fourier sine transform and the application of 
the results is illustrated with a numerical example. 
Keywords: Boussinesq equation, groundwater, Fourier transform 
 
1. INTRODUCTION 
Estimation of surface-groundwater interaction is an important aspect to scientists and engineers 
for its central role in the conjunctive management of water resources. Accurate estimation of 
water table fluctuations in an aquifer under the combined action of pumping and recharge is 
mandatory for proper groundwater management. Since, the experimental studies in groundwater 
hydrology are extremely expensive and time consuming; preliminary knowledge of water table 
fluctuations based on analytical modeling is gaining vast popularity due its cost effectiveness and 
ability to easily handle the variations in hydraulic parameters. Thus, there is a need of developing 
analytical models that can efficiently predict spatial and temporal variation of groundwater table 
and the capture zones associated with water sources or withdrawals. 
Most of the subsurface seepage models for approximation of hydro-interaction between stream 
and unconfined aquifers are based on Boussinesq equation (Bear 1972). The Boussinesq equation 
is a second order nonlinear partial differential equation which is analytically intractable. 
However, approximate analytical solutions of the Boussinesq equation are vastly used to 
understand the flow processes at various spatial and temporal scales (Hantush 1965, Hunt 1999, 
Moench and Barlow 2000) and analyze the transient behavior of water table in response to 
controlled activities such as artificial recharge and withdrawal from wells (Rai and Manglik 
2006, 2012; Bansal 2012, 2013). An extensive survey of the literature indicates that most of the 
existing models are based on two simplified assumptions: (i) the aquifer is isotropic, and (ii) the 
aquifer is underlain by a perfectly impervious bed. Such solutions may not be applicable to 
several natural systems consisting of leaky aquifers, e.g. multilayered aquifer in deep sedimentary 
basins where the recharge and withdrawal mechanism of a layer is partially controlled by the 
hydrological properties of the underlying aquitard. Furthermore, isotropy of an aquifer is an 
idealized assumption, mainly for tractability of analytical solution. In reality, aquifers are 
anisotropic, and thus, applying the results of the existing studies might lead to underestimation or 
overestimation of the actual results. 
In this paper, a new analytical solution of 2-dimensional linearized Boussinesq equation is 
developed. The hydrological setting of the model consists of an unconfined anisotropic aquifer 
overlaying a semipervious (leaky) base, subjected to recharge and withdrawal activities through 
multiple recharge basins and extraction/injection wells. The 2-dimensional linearized Boussinesq 
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equation is solved using finite Fourier transform to obtain the closed form expressions for 
hydraulic head in the aquifer. Implementation of the new results is illustrated with a numerical 
example. Sensitivity of the hydraulic head based on variation in aquifer parameters is analyzed. 
2. MATHEMATICAL FORMULATION AND ANALYTICAL SOLUTION 
Definition sketch of the problem is given in Fig 1. We consider an isotropic aquifer of dimension 
A х B, underlain by a semipervious bed. The hydraulic conductivity of the aquifer is denoted by K. 
The aquifer is in contact with two water bodies along the coastlines x = 0 and x = A that 
maintains a constant water head h0 along these coastlines. The other two boundaries, viz. y = 0 
and y = B of the aquifer are impervious and thus no flow condition is imposed across these 
boundaries. Due to hydrologic equilibrium between the aquifer and adjacent water bodies, the 
initial water table of the aquifer is considered to be h0. The aquifer domain is subjected to 
multiple recharge and withdrawal through rectangular recharge basins and point-sized wells.  
If h(x, y, t) denotes the variable water table measured from horizontal datum, then the flow of 
groundwater in the unconfined aquifer with semipervious base is governed by the following 2-
dimensional partial differential equation:  

 0( , , ) ( )h h h kK h h P x y t S h h
x x y y t b

  ∂ ∂ ∂ ∂ ∂  + + = + −   ∂ ∂ ∂ ∂ ∂    
                            (1) 

where S denotes the specific yield of the aquifer, and k and b denote the hydraulic conductivity 
and thickness of the of the semipervious bed of the unconfined aquifer. The term P(x, y, t) 
simulates the combined effects of recharge and discharge. The term P(x, y, t) broadly consists of 
arbitrary located rectangular basins of varying dimensions ai x bi, and injection/extraction wells 
of relatively lesser dimensions. Recharge is considered at time-varying rate, whereas the 
extraction/injection is considered at constant rate. All in all, the term P(x, y, t) is given by  

 ( ) ( ) ( ) ( )
1 2

1 1
, , , ,

p p

i j j j j
i j

P x y t R x y t Q x x y yω δ δ
= =

 
= + − − 
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∑ ∑                          (2) 

where, p1 and p2 denote the number of rectangular basin and wells respectively. Ri(x, y, t) denotes 
the transient recharge rate in the ith basin (i = 1, 2, …, p1) extending from xi ≤ x ≤ xi + ai; yi ≤ y 
≤ yi + bi. The term ωj is 1 or –1 according as the ith well corresponds to a injection or extraction 
well. Qj is the constant rate of injection/extraction in the jth well ( j = 1, 2,…., p2). δ is the Dirac 
delta function. The rate of recharge typically depends on several hydrologic parameters. However, 
the recession limb of a recharge hydrograph can be approximated by an exponentially decaying 
function of time to approximate the recharge rate. That is 

 0 1 , ;
( , , )

0, otherwise

i t
i i i i i i i i

i
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R x y t
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                       (3) 

where λi is a positive constant, determining the rate at which the recharge in the ith basin reduces 
to a final value Ni 0 from an initial value Ni 0 + Ni 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Overview of a two-dimensional anisotropic aquifer with multiple recharge basins, 
injection and extraction wells. 

The initial and the boundary conditions are prescribed as follows: 
 ( ) 0, , 0h x y t h= =                                               (4) 
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 ( ) ( )0 00, , ; , ,h x y t h h x a y t h= = = =                                           (6) 
Equation (1) is the second order two-dimensional Boussinesq equation of parabolic nature, and 
analytically intractable. In order to find approximate analytical solution of (1), we first rewrite it 
in the form 

 ( ) ( )
( )

2 22 2 2 2 2
0

2 2
0

2 1 2, ,
h hh h h kK P x y t S

x y K h t b h h
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                        (7) 

Equation (5) is now linearized by replacing the term h associated with ∂h2/∂t in the first bracket 
and the term (h + h0)/2 of the right-hand side by the mean depth of the saturation ħ. The value 
of ħ is obtained by successive application of the relation ħ = (h0 + ht)/2 where h0 is the initial 
water head and ht is the water head at the current moment (Marino 1973). The initial 
approximation of ħ is taken as h0. We obtain 

 ( ) ( )
2 2 2 2 2
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                     (8) 

Now, define H(x, y, t) = h2 – h02, we get 
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                              (9) 

The initial and boundary conditions read 
 ( ), , 0 0H x y =                                         (10) 
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 ( ) ( )0, , 0; , , 0H x y t H x A y t= = = =                                      (12) 
Equation (9) along with the conditions (10)–(12) is solved by using finite mixed Fourier 
transform (Sneddon 1974) Define  
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The finite Fourier cosine transform reduces the equation (9) in the following form 
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and                                            ( ) ( )sin cosj m j n jx yη β γ=   (18) 

Equation (14), subjected to conditions (5) and (6) can be solved using ordinary methods. Its 
solution is  
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where ( )2 2
m nα ν β γ= + where τ is a variable of integration. H(x, y, t) can now be obtained by 

inverting the finite Fourier transform as 
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Thus, the solution of equation (6) is   
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3. SHANKS TRANSFORMATION FOR ACCELERATION OF CONVERGENCE 
The rate of convergence of the series obtain in the preceding section is a major concern. 
Numerical experimentations reveal that one has to choose the indices m, n in the range 150-200 
to achieve the convergence up to second place of decimal. This requires a great deal of computer 
time and memory. In order to accelerate the convergence of series in the right-hand side of 
equation (21), we use a nonlinear transformation known as Shanks transformation. The Shanks 
transformation S{An} of a series {An}n = 1, 2, … of partial sums An is defined as follows: 

 { }
2

1 1

1 12
n n n

n
n n n

A A AS A
A A A

+ −

+ −

−
=

− +
  (22) 

The sequence S{An} converges more rapidly than the original series {An}. Further acceleration of 
convergence can be obtained by successive application of the Shanks transformation, i.e. by 
forming sequences S2{An}, S3{An} etc. 
4. DISCUSSION OF RESULTS 
In order to illustrate the implementation of results 
developed in this study, we consider an example with 
aquifer parameters as indicated in Table 1.  
The model domain is considered to have a rectangular 
basin of dimension 20 m х 10 m centered at (40m, 50m), 
and an extraction well centered at (120m, 50m). 
Dimension of the well is much small compared to that of 
the recharge basin. Transient recharge is applied to the 
rectangular basin at the rate 0.5 + 0.8 e–0.2t mm/d. At the 
same time, water is pumped out from the extraction well at a constant rate 150 m3/d. The 
average saturated depth of the aquifer is determined using an iterative relation ħ = (h0 + ht)/2 
where h0 is the initial water head and ht is the water head at the current moment (Marino 1973). 
The initial approximation of ħ is taken as h0. Transient profiles of the water table fluctuations are 
determined for various values of time t. Distribution of water head along line y = 50 m (line 
passing through the centers of recharge basin and extraction well) is presented in Figure 2.  

 
Figure 2. Development of transient water table in the aquifer along the line y = 50 m  

for t = 1, 5 and 10 d when (a) k = 0, and (b) k = 0.25 m/d 
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Table 1. Values of various aquifer 
parameters used in the numerical 

example 
Parameter Value 

A х B 150 m х 100 m 
K 10 m/d 
h0 15 m 
S 0.25 
b 1 m 
k 0.25 m/d 
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It can be seen from this figure that the groundwater mound and cone of depression are 
symmetrically distributed about the centers of basin and well respectively. While the height of 
mound increases with time, depth of cone remains almost unchanged. If the base of the aquifer is 
of lesser hydraulic conductivity (Figure 2(a) for k = 0), the downward leakage through its base is 
lesser, and thus, such aquifers exhibit higher level of water table in response to recharge. Water 
table depletion induced by pumping from the well is also affected by the ratio b/k. When the 
aquifer’s base is leaky aquifers, withdrawal from the well is supplemented by the leakage induced 
vertical flow from hydraulically connected sources. Consequently, the depth of the cone of 
depression is mitigated by the bed leakage. Three dimensional combined view of the groundwater 
mound and the cone of depression is shown in Figure 3 (a) and (b) for t = 1 and 10 days 
respectively by considering k = 0.25 m/d. 

 
Figure 3. Three dimensional overview of the water table in the aquifer with leaky base  

(k = 0.25 m/d) for (a) t = 1 d, and (b) t = 10 d 
4. CONCLUSION 
New analytical solution of the 2-dimensional linearized Boussinesq equation characterizing flow 
in isotropic and leaky porous medium is developed. The solution has the ability to predict the 
fluctuations in water table in unconfined aquifer due to multiple recharge and withdrawal. It is 
demonstrated in the numerical example that the formation of groundwater mound and cone of 
depression beneath recharge basin and extraction well are significantly affected by the hydraulic 
resistance of the base of the aquifer.  
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