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Abstract: As thin-walled cold-formed members are thin, this will give rise to behavioural phenomena, which are 
not usually encountered in the more familiar hot-rolled sections. Firstly, when thin-walled members are under 
compression, local buckling will occur since the plate width to thickness ratio is too high. One of the effects of local 
buckling is to reduce the member stiffness against overall flexure and torsion. Before local buckling occurs, the 
channel is under uniform compression and afterwards stress distribution in the channel is no longer uniform and 
load is mainly resisted by areas of high stiffness. Secondly, distortional buckling sometimes occurs in compressed 
lipped channel sections of intermediate length. Distortional buckling of a lipped channel usually involves rotation 
of the flanges and the lips around the flange-web junctions. Thirdly, cold-formed steel columns are more easily to 
fail in flexural buckling because they always have a larger slenderness compared to the same length of hot-rolled 
columns. Fourthly, since many cold-formed sections have either no, or only one, axis of symmetry, this means that 
these sections have a natural inclination to twist under load. Thus they will more easily fail in torsional buckling 
or flexural-torsional buckling. Finally, a cold-formed steel section may fail in shear buckling due to its small 
thickness. Therefore this paper focuses on calculation approaches for thin-walled cold-formed steel structures at 
room temperature. 
Keywords: cold-formed, steel, thin-wall, ambient, structure, calculation method 
 
1. INTRODUCTION 
Cold-formed thin-walled steel members offer a high strength to weight ratio and are also easy to 
construct when compared to thicker hot-rolled steel members. Because of this, cold-formed thin-walled 
steel sections as load-bearing structural components, i.e. beams, floor joints, columns and load-bearing 
walls, are extensively used in low to medium-rise domestic and industrial buildings and in almost any 
imaginable location since it was first applied in building construction in about 1850 in the U.S.A. Its 
applications and our understanding of its behaviour have been further expanded in various fields by 
leaps and bounds since the first specification for cold-formed steel design was issued by the American 
Iron and Steel Institute (AISI) in 1946. Despite the availability of cold-formed steel framing, there are 
still basic barriers that impede its adoption in residential and industrial markets. Probably one of the 
primary barriers is that the building industry is generally reluctant to adopt alternative building 
methods and materials unless they exhibit clear quality or performance advantages. The fire 
performances of cold-formed structural members are important considerations when designing light 
weight steel building. However, reported studies of the fire performance of cold-formed thin-walled 
steel members are few and the behaviour of thin-walled steel structures in fire conditions is not clear. 
The design procedure for their fire protection is still largely based on the limited choices supplied by 
manufacturers on the basis of their standard fire resistance tests [1]. Not only is this expensive, but it 
also limits flexibility of the designer. 
2. LOCAL BUCKLING  
Local buckling is particularly prevalent in cold-formed thin-walled sections and is characterised by the 
relatively short buckling wavelength of individual plate elements. Two methods may be employed to 
deal with local buckling, one being a numerical method, such as the finite element method (FEM), the 
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finite strip method (FSM) or the Generalized Beam Theory (GBT), the other being simple and empirical 
hand calculation equations. Numerical methods can be used to give very detailed information of local 
buckling stresses. But they are too complex and time consuming for daily design. In the hand analytical 
approach, a thin-walled steel section can be considered as composed of a number of plates joined 
together at mutual edges along which the conditions of continuity and equilibrium must be satisfied. 
Therefore, the problem of calculating the local buckling capacity of a member is transformed to the 
problem of calculating the local buckling capacity of the plate elements. For each plate, the local buckling 
capacity depends on the effective area of the plate, which is equal to the effective width of the plate 
multiplied by its thickness.  The effective width of a plate depends on the stress distribution in the plate, 
the supporting condition and the width to thickness ratio of the plate.   

≈b ≈b σeff σeff σeff 

beff 

beff 

b 

Actual stress distribution 

Simplified equivalent stress  

 
Figure 1. Effective width beff of a plane element stiffened along both edges 

Figure 1 illustrates the form of stress distribution usually encountered across the critical section of a 
uniformly compressed plate. The maximum stress occurs at the supported plate edges while stresses 
near the heavily buckled plate centre are relatively small, such that it can be considered that the 
effectiveness of the plate in withstanding loading is confined to the supported plate edges. The effective 
width concept assumes that the portions of a plate element (e.g. beff/2 in Figure 1) near the supports are 
fully effective in resisting load and the remainder of the element is completely ineffective as shown in 
Figure 1. 
Winter’s equation [2] is usually adopted by various design methods. It gives: 
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in which the plate slenderness λ is defined by: 
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where, b is the plate width; beff is the effective width of the plate; σcr is the critical buckling stress of the 
plate, and Ys is the maximum edge stress of the plate and may be taken as the design yield stress of the 
plate. E is the Young's modulus; kσ is a buckling factor, which is a function of the plate supporting 
condition. kσ = 4.0 for a simply supported plate in uniform compression and 0.43 for an outstand plate 
element with one edge free. 
ENV 1993-1-3 (CEN 2001) made a small change in Eqn (1) and (2) for plate with different supports and 
also gives some comprehensive rules for determining the effective widths of a plate under different 
stress conditions by using Eqns (1) and (2). A slightly different approach to dealing with local buckling 
is adopted in the British standard (BS5950 Part 5 (BSI 1998)). The expression for effective width in 
BS5950 Part 5 is: 
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Due to a lack of test data, the AISI Specification (1996) treats unstiffened elements with stress gradients 
as if they were uniformly compressed under the maximum stress. Although BS5950 (BSI 1998) and ENV 
1993-1-3 (CEN 2001) allow detailed calculations of the elastic buckling coefficient (kσ), the same 
effective width equation for a uniformly compressed element is used for elements with stress gradients.  
3. DISTORTIONAL BUCKLING 
Distortional buckling has only recently received the attention of researchers and a number of analytical 
methods have been developed for determining the elastic distortional buckling stress of singly 
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symmetric cross-sections. 
Refer to Figure 2, since distortional buckling mainly 
involves the rotation and lateral bending of the 
flanges, approximate expressions can be derived by 
considering the flanges in isolation, assuming that 
they are undistorted. The design formulas are given 
below: 
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where, Pcr is the distortional buckling load. 
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P’ is obtained with 
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The distortional stress is 
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In equations 5-17, E is the Young’s modulus of steel; D is the lipped flange flexural rigidity, 
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; ϖ is the Poisson’s ratio; Ix and Iy are the second moments of area of the lipped flange about x, y axes, 
respectively; Ixy is the product second moment of area of the lipped flange about the x, y axes; Iw is the 
warping constant of the lipped flange; J is the torsion constant of the lipped flange; A is the cross-
sectional area of the lipped flange; t is the thickness of the flange; bw is the depth of the web; hx and hy 
are the x, y coordinates of the flange/web junction; x0 and y0 are the x, y coordinates of the shear centre, 
as shown in Figure 2. In Figure 2, the origin of the x-y axes is at the centroid of the flange and lip unit. 
The formulations are:  
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where σde is the elastic distortional buckling stress, given by σde in equation 2.17, fy is the yield stress.  
The second is a modification plate-strength curve and is based mainly on the plate-strength design 
approach as used for distortional buckling in the AISI specification when the lip is not adequate to fully 
support the flange. The formulation is given by: 
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Figure 2. Cross-section of a lipped channel 
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The distortional buckling slenderness is defined as: 
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These two proposed design equations are consistent when predicting distortional buckling load, but the 
second one is easier to combine with current code design methods to predict the failure load for mixed 
local and distortional buckling model including the case where local buckling occurs before distortional 
buckling. The generalized Beam Theory (GBT), which has been pioneered by Professor R. Schardt and 
his colleagues at the University of Darmstadt in Germany, has become a useful tool to study distortional 
buckling of thin-walled columns. Separate and combined individual buckling modes can be associated 
with load components in GBT.  
The basic equation of GBT is  

       qVBVDGVCE kkk''kk''''kk =+−         (23) 
in which the second-order effects are excluded. Ignoring the shear effect, the equation for mode ‘k’ is  
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Where k denotes mode k; kC is the generalized warping constant; kD is the generalized torsional constant 
and kB is the transverse bending stiffness. The generalized section properties depend only on the cross-
section geometry. ijkk is a three dimensional array of second-order terms which takes account of the 
interactions between in-plane stresses in the faces and out-of-plane deformations. kV and kW are the 
generalized deformation and warping stress resultants in the ith mode, respectively. E and G are the 
modulus of elasticity and shear modulus. kq is the uniformly distributed load and n is the number of 
modes in the analysis. The critical stress iW, can be obtained if kq is zero. 
If assuming that the member will buckle in a half sine wave of wavelength λ, the critical stress for single-
mode buckling, which is valid for buckling in any individual mode, is [3]: 
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As the wavelength is varied, the minimum critical stress result is: 
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and the corresponding half-wavelength is  
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From equations 25, 26 and 27 it can be seen that the distortional critical stress resultant for mode k is 
only dependant on the second-order coupling term ikkk when the load is applied in a different mode i 
and the half wavelength depends only on the cross-section properties kC and kB which are independent 
of the load. Rotational restraint stiffness kφ in equation (15) may become negative with increasing depth 
of the web from equation (15) and if the web buckles earlier than the flange, this may result in a low 
prediction of the distortional buckling stress. Therefore, for this case, a simple buckling model where 
the rotational restraint between the flange and the web can be treated as zero can be established and 
the buckling stresses in the flange and web can be analysed separately. As the buckling load P’ of the 
flange alone can be obtained with kφ taken as zero in equation (15), the buckling stress of the web plate 
is: 
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When the buckling stress in the web is smaller than that in the flange, there is some buckling interaction 
and the mean buckling stress can be calculated approximately by: 
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where, Ag is the area of whole cross-section. 
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In the AISI Specification (1996), the inability of the edge stiffener to prevent distortional buckling is 
taken into account by reducing the local buckling coefficient of the plate element supported by the 
stiffener to a value below 4.0. In this method, the buckling coefficient (kσ) can be chosen from Table 1. 

Table 1. Buckling coefficient k to consider distortional buckling effect 

 Buckling coefficient kσ 
0.25 < w/bf ≤ 0.8 w/bf ≤ 0.25 

 4 

   

   

Note: yf/E28.1S = ; Ia is second moment of area of stiffener; 

12/)sintd(I 23
s θ= ; w, bL can be seen in Figure 3. 

The elastic foundation is represented by a spring whose 
stiffness depends upon the bending stiffness of the adjacent 
parts to the plate element of the cross-section under 
consideration and on the boundary condition of the 
element. The spring stiffness of the stiffener may be 
determined by applying a unit load per unit length to the 
cross-section at the location of the stiffener, as illustrated in 
Figure 4. The spring stiffness K per unit length may be determined form:  

      /uK δ=       (30) 
where δ is the deflection of the stiffener due to a unit load u acting in the centroid of be2 and beL. For an 
edge stiffener, the deflection can be obtained from; 
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Therefore, the spring stiffness k can be stated as: 
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where, b1, b2 are the distance from the 
web-to-flange junction to the centre of the 
effective area of the edge stiffener of flange 
1 and 2, respectively, as shown in Figure 4; 
bf is the flange width, bw is the web depth; 

kf =0 for a beam in bending, 
1eff

2eff
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for a beam in axial compression, kf=1 for a 
symmetric beam. 
The critical buckling stress can be derived 
as: 
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in which, As and Is are the effective cross-
sectional area and the second moment of 
area of the stiffener, as shown in Figure 5. The rotational stiffness may be expressed as: 
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Figure 3. Elements with edge stiffener 
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Figure 4.  Determination of the spring stiffness K according to 
ENV1993-1-3 [4] 
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where, Kfe and Kfg are the elastic 
rotational stiffness of the flange and the 
geometric rotational stiffness of the 
flange, repectively; Kwe and Kwg are 
the elastic rotational stiffness of the 
web and the geometric rotational 
stiffness of the web, respectively [5]. 
Analytical models are needed for 
determining the rotational stiffness 
contributions from the flange and the 
web [6]. For the flange, cross-sectional 
distortion is not important; hence the 
flange is modelled as a column 
undergoing torsional-flexural buckling.  
For the web, cross-sectional distortion must be considered, so the web is modelled as a single finite strip. 
Therefore, the transverse shape function is a cubic polynomial [7]. The longitudinal shape functions of 
the flange and web are matched by using a single half-sine wave for each. The final rotational stiffness 
term for the flange and the web are presented as: 

f

2
2

xfof
yf

2
xyf

wf
2

xfofxf

4

fe GJ
L

)hx(
I
I

EEC)hx(EI
L

K 





 π

+









−−+−






 π

=φ             (36) 













++











++








−−








−






 π

=φ yfxf
2

f0
2
xf

yf

xyf
xfof0

2

yf

xyf2
xfoff

2

fg IIyh
I
I

)hx(y2
I
I

)hx(A
L

k~                    (37) 

)1(b6
EtK 2

w

3

we
ν−

=φ                   (38) 

60
tb

L
k~

3
w

2

wg 





 π

=φ                   (39) 

The critical length can also be found and it is a function of the geometric terms. It can be calculated by: 
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where, E is elastic modulus; G is shear modulus; ν is 
poisson’s ratio; t is the plate thickness; bw is the web width; 
L is the distance between restraints which limit rotation of 
the flange/web junction; Af is the gross area of the 
compression flange; Ixf and Iyf are the second moments of 
area of the flange along x and y direction, respectively; Iw is 
warping constant of the flange. xof is x-distance from the 
flange/web junction to the centroid of the flange; hxf is x-
distance from the centroid of the flange to the shear centre 
of flange, as shown in Figure 6. 
4. GLOBAL BUCKLING 
For a thin-walled steel column under compression, the column may undergo different forms of global 
buckling, including flexural buckling, torsional buckling and combined flexural-torsional buckling. The 
local buckling and distortional buckling cause reduction in the effective stiffness of the member and thus 
affect the overall flexural and torsional-flexural buckling strength of the columns and lateral buckling 
strength of the beams [8]. Therefore, the ultimate failure of a thin-walled column under compression 
may be a combination of local and overall buckling or 
distortional and overall buckling. In design 
calculations, local and distortional bucking modes are 
considered first by evaluating the effective cross-
section of the structural member. Global buckling is 
then checked using properties of the effective cross-
section, which are obtained from local or distortional buckling behaviour. Due to local and distortional 
buckling, the centroid of the effective cross-section and the gross cross-section may not coincide. In this 

 

bf 

be1 be2 

b1 

K 

beL 
bL 

b 

b 

a a 

As, Is bf / t ≤ 60 
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Figure 7. Neutral axis shift 
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situation, the effect of a shift in the centroid should be included, which can be seen in Figure 7. This shift 
in neutral axis is to introduce a bending moment in an axially loaded member. The shift results from the 
asymmetric redistribution of longitudinal stresses following the development of local buckling 
deformations, leading to an eccentricity of the applied load in pin-end columns.  
In BS5950 Part 5, for sections symmetrical about both principal axes and closed cross-sections which 
are not subject to torsional flexural buckling, or are braced against twisting or columns with fixed end 
conditions, the flexural buckling load may be calculated as: 
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in which, Pcs is the cross-sectional capacity for local buckling; I is the second moment of area of the cross 
section; Le is the effective length of the member; i is the radius of gyration of the gross cross-section 
corresponding to PE. 
For cross-sections with a single symmetry axis, the effects of movement of the effective neutral axis 
should be taken into account. The ultimate load carrying capacity for flexural buckling should be 
calculated as:  
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where Mc is the elastic bending moment capacity of the cross-section, Pc is the flexural buckling capacity 
in which the neutral axis shit has not been considered and es is the distance between the geometric 
neutral axis of the gross cross-section and that of the effective cross-section . 
Different buckling curves, which should be chosen in accordance with the type of cross-section and axis 
of buckling, should be used to determine the flexural buckling capacity.  
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In AISI, the basic equation (51) can be used to determine the various global buckling load.  
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where,  Fn is determined as: 
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where, Aeff is the effective area of the cross-section and K is the effective length factor, which is related 
to the boundary condition. 
If the cross-section of a column has only one axis of symmetry and without lateral bracing against 
twisting, the column may fail into torsional or torsional buckling mode. The load carrying capacity for 
torsional or torsional-flexural buckling in BS5950 Part 5 can be calculated as: 
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in which, Ix is the second moment of area about the x axis; G is the shear modulus; J is the St Venant 
torsion constant for the cross-section which may be taken as the summation of bt3/3 for all element, 
where b is the element flat width and t is the thickness; Cw is the warping constant for the cross-section; 
x0 is the distance from the shear centre to the centroid measured along the x axis and ix and iy are the 
gyration about the x and y axes, respectively [9]. 
Buckling curve b is used to determine the torsional or torsional-flexural buckling capacities. The basic 
equation is the same as Eqn. 45, provided coefficient χ is decided as: 
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5.0
A

5.0
crY ][)f( βσ=λ                (64) 

T,crcrTF,crcr but  , σ≤σσ=σ      (65) 
Based on 12 plain channel tests and 8 lipped channel tests, for studying coupled local and overall 
torsional-flexural buckling behaviour of cold-formed singly sysmemtric sections subjected to eccentric 
loads. They found that AISI and ENV1993-1-3 methods gave conservative predicted results [10]. 
CONCLUSION 
Although the behaviour of cold-formed thin-walled steel structures at ambient temperature, including 
local buckling, distortional buckling, global buckling and shear buckling have been well understood and 
suitable design methods existed, there are only sporadic research studies of cold-formed thin-walled 
steel structures at high temperatures. Because of the lack of a systematic research study on cold-formed 
thin-walled steel structures in fire a suitable design procedure can not be drawn, which impedes the 
adoption of cold-formed thin-walled steel structures in the construction market.  
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