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Abstract: In this work, analytical solutions to large amplitude nonlinear oscillation systems are provided using
term by term series integration method. The developed analytical solutions are shown to be valid for both small
and large amplitudes of oscillation. The accuracy and explicitness of the analytical solutions were carried out to
establish the validity of the method. In conclusion, good agreements are established. The analytical solutions can
serve as a starting point for a better understanding of the relationship between the physical quantities of the
problems as it provides continuous physical insights into the problems than pure numerical or computation
methods.
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1. INTRODUCTION

The modelling of large amplitude of structures such as slender, flexible cantilever beam carrying a
lumped mass with rotary inertia at intermediate point along its span and also in fluid-structure
interaction resting on nonlinear elastic foundations or subjected to stretching effects often lead to
strongly nonlinear models which are not amendable to exact analytical methods. In the cases where the
exact analytical solutions are presented either in implicit or explicit form, it involves complex
mathematical analysis with possession of high skills in mathematics. Also, such solutions do not provide
general exact analytical solutions since they often come with conditional statements which make them
limited in used. Application of analytical methods such as Exp-function method, He’s Exp-function
method, improved F-expansion method, Lindstedt-Poincare techniques, quotient trigonometric
function expansion method to the nonlinear equation present analytical solutions either in implicit or
explicit form which often involved complex mathematical analysis leading to analytic expression
involving a large number terms. Furthermore, the methods are time-consuming task accompanied with
possessing high skills in mathematics. Also, they do not provide general analytical solutions since the
solutions often come with conditional statements (i.e. except in limited circumstances where exact
analytical solutions are possible) which make them limited in used as many of the conditions with the
exact solutions do not meet up with the practical applications since they give approximated solutions
that hardly provide an all-encompassing understanding of the nature of systems in response to
parameters affecting nonlinearity. Also, in practice, analytical solutions with large number of terms and
conditional statements for the solutions are not convenient for use by designers and engineers [1].
Consequently, recourse has always been made to numerical methods or approximate analytical methods
in solving the problems [2-25]. However, the classical way for finding exact analytical solution is
obviously still very important since it serves as an accurate benchmark for numerical solutions. Also,
the experimental data are useful to access the mathematical models, but are never sufficient to verify
the numerical solutions of the established mathematical models. Comparison between the numerical
calculations and experimental data often fail to reveal the compensation of modelling deficiencies
through the computational errors or unconscious approximations in establishing applicable numerical
schemes. Additionally, exact analytical solutions for specified problems are also essential for the
development of efficient applied numerical simulation tools. Inevitably, exact analytical expressions are
required to show the direct relationship between the models parameters. When such exact analytical
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solutions are available, they provide good insights into the significance of various system parameters
affecting the phenomena as it gives continuous physical insights than pure numerical or computation
methods. Furthermore, most of the analytical approximation and purely numerical methods that were
applied in literatures to nonlinear problems are computationally intensive. Exact analytical expression
is more convenient for engineering calculations compare with experimental or numerical studies and it
is obvious starting point for a better understanding of the relationship between physical
quantities/properties. It is convenient for parametric studies, accounting for the physics of the problem
and appears more appealing than the numerical solutions. [t appears more appealing than the numerical
solution as it helps to reduce the computation costs, simulations and task in the analysis of real life
problems. Therefore, an exact analytical solution is required for the problem. Therefore, in this
research, analytical solutions are provided to the nonlinear Duffing Oscillators. Simplicity, flexibility in
application, and avoidance of complicated numerical integration are some of the added advantages over
the previous methods. It provides complementary advantages of higher accuracy, reduced computation
cost and task as compared to the other methods as found in literatures. The developed analytical
solutions are compared with the numerical results and the results of approximate analytical solutions
and good agreements reached. The analytical solutions can serve as a starting point for a better
understanding of the relationship between the physical quantities of the problems as it provides
continuous physical insights into the problem than pure numerical or computation methods.
2. DEVELOPMENT OF EXACT ANALYTICAL SOLUTIONS FOR THE NATURAL FREQUENCIES OF THE
STRUCTURES

U(z) + au(z) + pu(r) =0 (1)
The initial conditions are

u(0)=Au(0)=0

Integrating Eq. (1), we have

%Uz(r)+ ;U (z’)+'B “(r)=c (2)
where cis a constant. On imposing the initial condition, we have
2 B 3)
2 4
Substituting Eq. (3) into Eq. (2), we have
1 p 0 2 ﬁ 4
“w(r)+Zu + = A A 4
> *(7) 5 2(r)+-u'(e) = 2 (4)
which gives
dt = du (5)

\/a(AZ —u?) +§(A“ —u%y

Integrating Eq. (5)
du (6)

a(A —u?) +§(A4 —u%

[fa-[
y

Then we
du (7)

\/a(Az —u2)+§(A4 —u?)

T (A) = 4j0A

On substituting,u = Asint, we have

z 8
T :4.[02 Acostdt (8)

p

\/aAz(l— sin’) +§A4 (1—sint)

which gives
dt 9)

and
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which gives

_App__dt (11)
0 J1-&Zsin’t
where
BN
LS 2
G = {a + } =5
O
2
The above Eq. (11) is called the complete elliptic integral of first kind
== j <1 (12)
V1- §2 sin’t
In order to evaluate the integral, we expand the integral in the form of series as
8
—. e & sin’t + 22 3, sin’t + =2 4 Sin%t + 5252 sinft + . (13)
J1-EZsih’t 128

The above series is uniformly convergent for all£,, and may, therefore, be integrated term by term.
Then, we have
z 2 4 6
T :ijz 1552 sintt + 322 gintt+ 222 sinfr+ 3% sifer 1 ot (14)
0 2 8 16 128

After integration

2z 2 e (L358Y 5o (135 7Yy f2n-1Y (15)
Ty é{( lé ( lgyz (2 4 el 5”[2 4% 8] 5”"'{13 2n lé l

But 1,(8)=2% - %
w T,(A)

p

£ (16)

2 135V, (1357 N 2n-1Y
ll Je(3 *l Gt lﬂal = lﬂagl {1175, lfl

It can easily be seen that as the nonlinear term tends to zero, the frequency ratio of the nonlinear

frequency to the linear frequency, © tends to 1.
@,

lim-2 =1 (17)
& —0 a)b
Also, as the amplitude A tends to zero, the frequency ratio of the nonlinear frequency to the linear
frequency, ? tendsto 1.

@y
lim2 =1 (18)
A—0 a)b
For very large values of the amplitude A, we have
lim-“ = (19)
A—o0 %
Alternatively, we can have
7 (20)

D exact = 72 1
2{ [ (1-gsin*t) 2 dt}

0
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Using term-by-term series integration method, we developed an approximation analytical solution for
the nonlinear natural frequency as

& (21)
(1+0.25000¢, +0.11680¢,” +0.59601¢," ~1.90478¢," +2.04574¢,"

The ratio of the nonlinear frequency, w; to the linear frequency, wy

o _ ! (22)
@, (1+0.25000&, +0.11680&,7 +0.59601%," ~1.904785," +2.04574¢, )

Also, it can easily be seen that as the nonlinear term tends to zero, the frequency ratio of the nonlinear

w, =

frequency to the linear frequency, # tends to 1.
@y
lim -2 =1 (23)
&0 @)
Also, as the amplitude A tends to zero, the frequency ratio of the nonlinear frequency to the linear

frequency, % tends to 1.
@,
lim< =1 (24)
A—0 a)b
Also, it should be pointed out that when the nonlinear term, V is set to zero, we recovered the linear
natural frequency

1 [M} (25)
M
3. DEVELOPMENT OF ANALYTICAL SOLUTIONS FOR THE DYNAMIC RESPONSE OF STRUCTURES
du (26)

NEEr .
\/ M (A°—u?) 2M(A u*)
which gives
_ du (27)
(K+C) 2 2 \% 4 4
\/T(A —u )—m(A -u")

Integrating Eq. (27)

28
jdt=J (K C) du S ( )
+ 2 2y Va4 s
R
On substitutingu = Asing , we have
t:J' do (29)

flvl_égzzsmzqo
In order to evaluate the integral, we expand the integral in the form
;zhg—zsm ¢+ism ¢+£sm o+.. (30)
\/1_52272(/, 2 8 16
The above series is uniformly convergent for all£,, and may, therefore, be integrated term by term.
Then, we have

& «fz 5£7 3567 (31)
t= 51_[[1+ ) sinp+ =2 sin‘p+ =22 16 sin®p+ =22 128 sin®p +.. Jdgo
Where
om i (2m-1)(2m-3)...(2m-2k+1) . , L, | (2m-1)! (32)
fsm pdop { q)+kZ:; 2 (m_1)(m-2) .(m-K) sin Ot

Alternatively, by series expansion, we have

Substitute Eq. (33) into Eq.(29), we have

8 45 4 16 128 16 40 630
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2 8 45 4 16 128 16 40 630

g, 108 38, 1(& & 58,
4223 4252 702 |5 152 52
t 767 "5l 6 8(/’745416(/’@ (35)
e +
: +1(19;§8_5:Lé§_?:1%_6f0]¢9+'"

-] I{ .8 (,,[é :jq,,[éf%jq, [5553: g j¢s+,,}d¢ (34)

Applying, the second initial condition
PO KN PO K- Py
1 A+6A+5(6+8jA+7(45 4+16jA (36)

4 +1(5§ 56 34 if]m...

9
Substitute Eq. (35) into Eq. (36), we have

128 16 40 630

AR B i B X - = 37)
¢+?¢+5(6+8j +7(45 4+16j¢

1)],1(8 sg s g,

1 9(128 16 40 630

A+§_22A3+£ izz_*_ﬁ A5+1 izz_i_'.ﬁ A7
7(45 4 16

+;£g§_ﬁ_3_§§_é_§]Ae+,__

6 5(6 8
9(128 16 40 630

Which could be written as

2 (o & B8 (s as\ L& & 55 (A
1 (w—A)+%(¢’ -A )+g[§—+%j(¢ a )7[%‘%*%}(‘/’ -A') (38)

& +£[§_28_5_§?_£_ & ]((p O
ol128 16 40 630

tél_(D:¢+§_22(p3+%(§_2+£]¢5+%(§_22_§_24+£]¢7 +£[§_§_£_£_§_§]¢9 (39)

6 6 8 45 4 16 91128 16 40 630

By reversion of power series,
0= A (5= ®)+ 4 (15~ ®) + 4 (15 - @) + 4, (1 - @) (40)

+ 25 (15— @) + 4, (t&, - @) + 4, (t& - D) +
where ;3 _ 1 A= B _267-BBs P 6/, BofBs + 31 s — B s +14, — 215, 5, s
A, 5T 5 B
A= 58.8,8: =55 — B B A 7302 Bs +8ALJ: P +15: PaBa — 28 o Bs — B Ps — 281 B By —42f3;
Bl i i

(8B, B, B, +8B B s + 4B, B2 +1202 BS B, +1802 B2 B7 +132 85 — B2 3, — 3682 B2 s
— 723, BB — 1232 B — 3303, . |

A =
! B

where g, =1p8,=5,=5, = 0p - & B - (5_2 ﬁj B, = (fz §;+5_526J ﬁgzl(f_f_ﬁ_ﬁ_f_zzj

6 6 8 45 4 16 9(128 16 40 630
Recall that u= Asing Substituting Eq. (81), we have
u(t):Asin{Zl(té—@):ﬂz (t& - @) +623(t§1—<1>) +7,14 (& - @) } (41)
+25 (1 - D) + 45 (1&, - D) + 4, (& - D)

[t can easily be shown that

limu(t) = A (42)

_ OV 4 A (O + 4, (—)' Sopo 16,3 | 16 & 56 |
sin{ﬂl( Q)+ 4, (D) + 4, (D) + 4, (—D) _)1Where . A+ . A +5(6 M jA +7(45 e 16]A
(-®)

& +1(§§ 55 34 if)m

5 (D) + 2 (- + 4, (—

128 16 40 630

9
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4. CONCLUSION

Analytical solutions to large amplitude nonlinear oscillation systems have been provided. The
developed analytical solutions are shown to be valid for both small and large amplitudes of oscillation.
The accuracy and explicitness of the analytical solutions were carried out to establish the validity of the
method. In conclusion, good agreements are established. The analytical solutions can serve as a starting
point for a better understanding of the relationship between the physical quantities of the problems as
it provides continuous physical insights into the problems than pure numerical or computation
methods.
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