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Abstract: In this work, analytical solutions to large amplitude nonlinear oscillation systems are provided using 
term by term series integration method. The developed analytical solutions are shown to be valid for both small 
and large amplitudes of oscillation. The accuracy and explicitness of the analytical solutions were carried out to 
establish the validity of the method. In conclusion, good agreements are established. The analytical solutions can 
serve as a starting point for a better understanding of the relationship between the physical quantities of the 
problems as it provides continuous physical insights into the problems than pure numerical or computation 
methods. 
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1. INTRODUCTION 
The modelling of large amplitude of structures such as slender, flexible cantilever beam carrying a 
lumped mass with rotary inertia at intermediate point along its span and also in fluid-structure 
interaction resting on nonlinear elastic foundations or subjected to stretching effects often lead to 
strongly nonlinear models which are not amendable to exact analytical methods. In the cases where the 
exact analytical solutions are presented either in implicit or explicit form, it involves complex 
mathematical analysis with possession of high skills in mathematics. Also, such solutions do not provide 
general exact analytical solutions since they often come with conditional statements which make them 
limited in used. Application of analytical methods such as Exp-function method, He’s Exp-function 
method, improved F-expansion method, Lindstedt-Poincare techniques, quotient trigonometric 
function expansion method to the nonlinear equation present analytical solutions either in implicit or 
explicit form which often involved complex mathematical analysis leading to analytic expression 
involving a large number terms. Furthermore, the methods are time-consuming task accompanied with 
possessing high skills in mathematics. Also, they do not provide general analytical solutions since the 
solutions often come with conditional statements (i.e. except in limited circumstances where exact 
analytical solutions are possible) which make them limited in used as many of the conditions with the 
exact solutions do not meet up with the practical applications since they give approximated solutions 
that hardly provide an all-encompassing understanding of the nature of systems in response to 
parameters affecting nonlinearity. Also, in practice, analytical solutions with large number of terms and 
conditional statements for the solutions are not convenient for use by designers and engineers [1]. 
Consequently, recourse has always been made to numerical methods or approximate analytical methods 
in solving the problems [2-25]. However, the classical way for finding exact analytical solution is 
obviously still very important since it serves as an accurate benchmark for numerical solutions. Also, 
the experimental data are useful to access the mathematical models, but are never sufficient to verify 
the numerical solutions of the established mathematical models. Comparison between the numerical 
calculations and experimental data often fail to reveal the compensation of modelling deficiencies 
through the computational errors or unconscious approximations in establishing applicable numerical 
schemes. Additionally, exact analytical solutions for specified problems are also essential for the 
development of efficient applied numerical simulation tools. Inevitably, exact analytical expressions are 
required to show the direct relationship between the models parameters. When such exact analytical 



 

230 | F a s c i c u l e  3   

solutions are available, they provide good insights into the significance of various system parameters 
affecting the phenomena as it gives continuous physical insights than pure numerical or computation 
methods. Furthermore, most of the analytical approximation and purely numerical methods that were 
applied in literatures to nonlinear problems are computationally intensive. Exact analytical expression 
is more convenient for engineering calculations compare with experimental or numerical studies and it 
is obvious starting point for a better understanding of the relationship between physical 
quantities/properties. It is convenient for parametric studies, accounting for the physics of the problem 
and appears more appealing than the numerical solutions. It appears more appealing than the numerical 
solution as it helps to reduce the computation costs, simulations and task in the analysis of real life 
problems.  Therefore, an exact analytical solution is required for the problem. Therefore, in this 
research, analytical solutions are provided to the nonlinear Duffing Oscillators. Simplicity, flexibility in 
application, and avoidance of complicated numerical integration are some of the added advantages over 
the previous methods. It provides complementary advantages of higher accuracy, reduced computation 
cost and task as compared to the other methods as found in literatures. The developed analytical 
solutions are compared with the numerical results and the results of approximate analytical solutions 
and good agreements reached. The analytical solutions can serve as a starting point for a better 
understanding of the relationship between the physical quantities of the problems as it provides 
continuous physical insights into the problem than pure numerical or computation methods. 
2. DEVELOPMENT OF EXACT ANALYTICAL SOLUTIONS FOR THE NATURAL FREQUENCIES OF THE 
STRUCTURES 

3( ) ( ) ( ) 0u u uτ α τ β τ+ + =                                                                     (1) 
The initial conditions are  

(0)u A= (0) 0u =  
Integrating Eq. (1), we have 

2 2 41 ( ) ( ) ( )
2 2 4

u u u cα βτ τ τ+ + =                                                                (2) 

where c is a constant. On imposing the initial condition, we have 
2 4

2 4
c A Aα β
= +                                                                                (3) 

Substituting Eq. (3) into Eq. (2), we have  
2 2 4 2 41 ( ) ( ) ( )

2 2 4 2 4
u u u A Aα β α βτ τ τ+ + = +                                                     (4) 

which gives 

2 2 4 4( ) ( )
2

dudt
A u A uβα

=
− + −

                                                                   (5) 

Integrating Eq. (5) 
4

0 0
2 2 4 4( ) ( )

2

pT
A dudt

A u A uβα
=

− + −
∫ ∫

                                                             (6) 

Then we  

0
2 2 4 4

( ) 4
( ) ( )

2

A

p
duT A

A u A uβα
=

− + −
∫

                                                             (7) 

On substituting, u Asint= , we have 
2

0
2 2 4 4

cos4
(1 ) (1 )

2

p
A tdtT

A sin t A sin t

π

βα
=

− + −
∫

                                                          (8) 

which gives 
2

0 2 2
2

4

2 2

p
dtT

A A sin t

π

β βα

=
 

+ + 
 

∫
                                                                (9) 

and  
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2
0

2

2
2

2

4

21
2

2

p
dtT

A
A sin t

A

π

β
βα

βα

=
 
 −   + −        +    

∫

                                                   

(10) 

which gives 
2

2 20
1 2

4
1

p
dtT

sin t

π

ξ ξ
=

−
∫

                                                                       
(11) 

where  
2

2

1 2 2
2

2
2

A
A

A

β
βξ α ξ

βα

− 
= + =     + 

 

 

The above Eq. (11) is called the complete elliptic integral of first kind 
2

2 20
1 2

4
1

p
dtT

sin t

π

ξ ξ
=

−
∫

        

2
2 1ξ <                                                                   (12) 

In order to evaluate the integral, we expand the integral in the form of series as  
2 2 6 8

2 4 6 82 2 2 2
2 2
2

3 5 351 1 ...
2 8 16 1281

sin t sin t sin t sin t
sih t

ξ ξ ξ ξ

ξ
= + + + + +

−                                 
(13) 

The above series is uniformly convergent for all 2ξ , and may, therefore, be integrated term by term. 
Then, we have 

2 4 6 8
2 4 6 82 2 2 22

0
1

3 5 354 1 ...
2 8 16 128pT sin t sin t sin t sin t dt

π ξ ξ ξ ξ
ξ

 
= + + + + + 

 
∫

                                
(14) 

After integration 
22 2 2 2

2 4 6 8 2
2 2 2 2 2

11 1

2 2 1 1 3 1 3 5 1 3 5 7 2 1...
2 2 4 2 4 6 2 4 6 8 2

N
N

p
n

nT
n

π π ξ ξ ξ ξ ξ
ξ ξ =

 −        = + + ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ + +                     
Π

              
(15) 

But    2( )pT A π
ω

= 2
( )pT A
πω→ =  

1
22 2 2 2

2 4 6 8 2
2 2 2 2 2

1

1 1 3 1 3 5 1 3 5 7 2 11 ...
2 2 4 2 4 6 2 4 6 8 2

N
N

n

n
n

ξω

ξ ξ ξ ξ ξ
=

=
 −        + + ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ + +                     

Π

                           (16) 

It can easily be seen that as the nonlinear term tends to zero, the frequency ratio of the nonlinear 
frequency to the linear frequency, 

b

ω
ω

tends to 1. 

2 0
1

b

lim
ξ

ω
ω→

=                                                                                        (17) 

Also, as the amplitude A tends to zero, the frequency ratio of the nonlinear frequency to the linear 
frequency, 

b

ω
ω

tends to 1. 

0
1

A
b

lim ω
ω→

=                                                                                    (18) 

For very large values of the amplitude A, we have 

A
b

lim ω
ω→∞

= ∞                                                                                   (19) 

Alternatively, we can have 

( )
1

1, 2 1
2 2

2
0

2 1
exact

sin t dt
π

πξω
ξ

−
=

 
− 

  
∫

                                                                  (20) 
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Using term-by-term series integration method, we developed an approximation analytical solution for 
the nonlinear natural frequency as 

( )
1

1 2 3 4 5
2 2 2 2 21 0.25000 0.11680 0.59601 1.90478 2.04574

ξω
ξ ξ ξ ξ ξ

=
+ + + − +                          

(21)                      

The ratio of the nonlinear frequency, ω1 to the linear frequency, ωb 

( )
1

2 3 4 5
2 2 2 2 2

1
1 0.25000 0.11680 0.59601 1.90478 2.04574b

ω
ω ξ ξ ξ ξ ξ

=
+ + + − +                         

(22) 

Also, it can easily be seen that as the nonlinear term tends to zero, the frequency ratio of the nonlinear 
frequency to the linear frequency, 

b

ω
ω

tends to 1. 

2 0
1

b

lim
ξ

ω
ω→

=
                                                                             

(23) 

Also, as the amplitude A tends to zero, the frequency ratio of the nonlinear frequency to the linear 
frequency, 

b

ω
ω

tends to 1. 

0
1

A
b

lim ω
ω→

=
                                                                             

(24) 

Also, it should be pointed out that when the nonlinear term, V is set to zero, we recovered the linear 
natural frequency 

( )
b

K C
M

ω + =   
                                                                           (25) 

3. DEVELOPMENT OF ANALYTICAL SOLUTIONS FOR THE DYNAMIC RESPONSE OF STRUCTURES  

2 2 4 4( ) ( ) ( )
2

dudt
K C VA u A u

M M

=
+

− − −

                                                           (26) 

which gives 

2 2 4 4( ) ( ) ( )
2

dudt
K C VA u A u

M M

=
+

− − −

                                                           (27) 

Integrating Eq. (27) 

2 2 4 4( ) ( ) ( )
2

dudt
K C VA u A u

M M

=
+

− − −
∫ ∫

                                                         (28) 

On substituting u Asinϕ= , we have 

2 2
1 21

dt
sin

ϕ
ξ ξ ϕ

=
−

∫                                                                           (29) 

In order to evaluate the integral, we expand the integral in the form 
2 2 6

2 4 62 2 2
2 2
2

3 51 1 ...
2 8 161

sin sin sin
sin

ξ ξ ξϕ ϕ ϕ
ξ ϕ

= + + + +
−                                             

(30) 

The above series is uniformly convergent for all 2ξ , and may, therefore, be integrated term by term. 
Then, we have 

2 4 6 8
2 4 6 82 2 2 2

1

3 5 351 1 ...
2 8 16 128

t sin sin sin sin dξ ξ ξ ξϕ ϕ ϕ ϕ ϕ
ξ

 
= + + + + + 

 
∫                                      (31) 

Where  
( )( ) ( )

( )( ) ( )
( )1

2 2 1 2 2 1

1

2 1 2 3 ... 2 2 1 2 1 !!
2 2 1 2 ... 2 !

m
m m m k

k m
k

m m m k mcossin d sin sin
m m m m k m
ϕϕ ϕ ϕ ϕ ϕ

−
− − −

=

 − − − + −−  = + + − − −  
∑∫

                     
(32) 

Alternatively, by series expansion, we have 
2 2 4 2 4 6 8 6 4 2

2 4 6 82 2 2 2 2 2 2 2 2 2
2 2
2

3 5 5 31 1 ...
2 6 8 45 4 16 128 16 40 6301 sin
ξ ξ ξ ξ ξ ξ ξ ξ ξ ξϕ ϕ ϕ ϕ

ξ ϕ

     
= + + + + − + + − − − +     

−                      
(33) 

Substitute Eq. (33) into Eq.(29), we have  
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2 2 4 2 4 6 8 6 4 2
2 4 6 82 2 2 2 2 2 2 2 2 2

1

3 5 5 31 1 ...
2 6 8 45 4 16 128 16 40 630

t dξ ξ ξ ξ ξ ξ ξ ξ ξ ξϕ ϕ ϕ ϕ ϕ
ξ

       = + + + + − + + − − − +      
       
∫                       (34) 

2 2 4 2 4 6
3 5 72 2 2 2 2 2

8 6 4 2
1 92 2 2 2

3 51 1
6 5 6 8 7 45 4 161

5 31 ...
9 128 16 40 630

t

ξ ξ ξ ξ ξ ξϕ ϕ ϕ ϕ

ξ ξ ξ ξ ξ ϕ

    
+ + + + − +    

     = +Φ 
  + − − − +    

                                        (35) 

Applying, the second initial condition  
2 2 4 2 4 6

3 5 72 2 2 2 2 2

8 6 4 2
1 92 2 2 2

3 51 1
6 5 6 8 7 45 4 161

5 31 ...
9 128 16 40 630

A A A A

A

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

    
+ + + + − +    

     Φ = −  
  + − − − +    

                                           (36) 

Substitute Eq. (35) into Eq. (36), we have  

2 2 4 2 4 6
3 5 72 2 2 2 2 2

8 6 4 2
92 2 2 2

1

2 2 4 2 4 6
3 5 72 2 2 2 2 2

8 6 4 2
92 2 2 2

3 51 1
6 5 6 8 7 45 4 16

5 31 1 ...
9 128 16 40 630

3 51 1
6 5 6 8 7 45 4 16

5 31
9 128 16 40 630

t

A A A A

A

ξ ξ ξ ξ ξ ξϕ ϕ ϕ ϕ

ξ ξ ξ ξ ϕ
ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

   
+ + + + − +   

   
 

= + − − − + 
 

   
+ + + + − +   

   −
 

+ − − − 
 

...

  
  
  
  
  
  
  
  
 
 
      
  
  +     

                                          (37) 

Which could be written as 

( ) ( ) ( ) ( )

( )

2 2 4 2 4 6
3 3 5 5 7 72 2 2 2 2 2

8 6 4 2
1 9 92 2 2 2

3 51 1
6 5 6 8 7 45 4 161
5 31 ...

9 128 16 40 630

A A A A
t

A

ξ ξ ξ ξ ξ ξϕ ϕ ϕ ϕ

ξ ξ ξ ξ ξ ϕ

    
− + − + + − + − + −    

     =  
  + − − − − +    

                      (38) 

2 2 4 2 4 6 8 6 4 2
3 5 7 92 2 2 2 2 2 2 2 2 2

1
3 5 5 31 1 1

6 5 6 8 7 45 4 16 9 128 16 40 630
t ξ ξ ξ ξ ξ ξ ξ ξ ξ ξξ ϕ ϕ ϕ ϕ ϕ

     
−Φ = + + + + − + + − − −     

     
                  (39) 

By reversion of power series, 
( ) ( ) ( ) ( )
( ) ( ) ( )

2 3 4
1 1 2 1 3 1 4 1

5 6 7
5 1 6 1 7 1 ...

t t t t

t t t

ϕ λ ξ λ ξ λ ξ λ ξ

λ ξ λ ξ λ ξ

= −Φ + −Φ + −Φ + −Φ

+ −Φ + −Φ + −Φ +
                                           (40) 

where 
1

1
1
β

λ =  
3

1

2
2 β

β
λ −= 5

1

31
2
2

3
2

β
βββ

λ
−

=
 

9
1

3
2
21

4
25

3
1

2
3

2
142

2
1

5
211436

β
βββββββββββ

λ
−+−+

=
 

7
1

4
2

1
3
2321

4
55
β

ββββββ
λ

−−
=

11
1

5
24

2
2

2
16

4
1

2
32

2
143

3
13

3
2152

3
1

6
4228287847

β
ββββββββββββββββββ

λ
−−−−++

=
 

{
}

13
1

3
4
21

3
3

3
1432

3
1

5
2
2

3
17

5
1

6
2

2
3

2
2

2
14

3
2

2
1

2
4

4
153

4
162

4
1

7
3301272

36132180120488

β
βββββββββ

ββββββββββββββββββββ

λ
−−−

−−+++++

=
 

where 1 1β = 2 4 6 0β β β= = =
2 2 4 2 4 6 8 6 4 2
2 2 2 2 2 2 2 2 2 2

3 3 7 9
3 5 5 31 1 1

6 5 6 8 7 45 4 16 9 128 16 40 630
ξ ξ ξ ξ ξ ξ ξ ξ ξ ξβ β β β

     
= = + = − + = − − −     

     
 

Recall that   u Asinϕ= . Substituting Eq. (81), we have 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 3 4
1 1 2 1 3 1 4 1

5 6 7
5 1 6 1 7 1

( )
t t t t

u t Asin
t t t

λ ξ λ ξ λ ξ λ ξ

λ ξ λ ξ λ ξ

 −Φ + −Φ + −Φ + −Φ =  
+ −Φ + −Φ + −Φ                                         

(41) 

It can easily be shown that  

0
( )

t
limu t A
→

=                                                                                   (42) 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 3 4
1 2 3 4

5 6 7
5 6 7

1sin
λ λ λ λ

λ λ λ

 −Φ + −Φ + −Φ + −Φ → 
+ −Φ + −Φ + −Φ  

where 
2 2 4 2 4 6

3 5 72 2 2 2 2 2

8 6 4 2
1 92 2 2 2

3 51 1
6 5 6 8 7 45 4 161

5 31 ...
9 128 16 40 630

A A A A

A

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

    
+ + + + − +    

     −Φ =  
  + − − − +    
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4. CONCLUSION 
Analytical solutions to large amplitude nonlinear oscillation systems have been provided. The 
developed analytical solutions are shown to be valid for both small and large amplitudes of oscillation. 
The accuracy and explicitness of the analytical solutions were carried out to establish the validity of the 
method. In conclusion, good agreements are established. The analytical solutions can serve as a starting 
point for a better understanding of the relationship between the physical quantities of the problems as 
it provides continuous physical insights into the problems than pure numerical or computation 
methods. 
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