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Abstract: In this paper, Homotopy Analysis Method (HAM) is implemented to obtain an approximate solution (a 
non-zero auxiliary function) to the coupled nonlinear ordinary differential equations emerging from the magnetic 
field effect on free convection flow of an incompressible, viscous laminar fluid in the presence of buoyancy force 
past a semi-infinite flat plate. The result obtained by this method provides a discussion on the effects of these 
parameters on velocity, temperature and concentration profiles, the skin-friction coefficient, rate of heat transfer 
and Sherwood and validates the potential applicability of HAM in solving partial differential equations. 
Keywords: Semi-infinite flat plate, HAM, non-zero auxiliary function, Sherwood number, magnetic field, 
approximate solution 
 
1. INTRODUCTION 
Free convective heat and mass transfer have been studied due to their application in metrology, 
astrophysics, geophysics, solar physics, aeronautics and electronics. This has prompted many 
researchers into this grey area. Similarly, the use of approximate solution methods as an alternative to 
validate the great potential of the methods in solving partial differential equations has attracted many 
researchers. Liao (1992) employed the basic ideas of the Homotopy in topology to propose a general 
analytical approach for nonlinear problems. This came to light when he researched into Homotopy 
analysis method (Liao, 2003). Comparison between the Homotopy analysis method and Homotopy 
perturbation method was looked into by Liao (2005).Majid et al. (2010) studied application of Laplace 
decomposition method to solve nonlinear coupled partial differential equations. Approximate solution 
for the coupled nonlinear equations using Homotopy analysis method was studied by Suping and Li 
(2011). Shit and Haldar (2012) studied the effect of thermal radiation and temperature dependent 
viscosity on free convective flow and mass transfer of an electrically conducting fluid over an isothermal 
sheet. 
Farooq et al. (2012) looked into application of He’s method in solving a system of nonlinear coupled 
equations arising in non-newtonian fluid mechanics. Thermal conductivity and its effects on 
compressible boundary layer flow over a circular cylinder were studied by Anselm and Koriko (2013). 
Animasaun and Oyem (2014) investigated the effect of variable viscosity, Dufour, Soret and thermal 
conductivity on free convective heat and mass transfer of non-Darcian flow past flat surface. Combined 
effects of viscous dissipation and magnetic field on MHD free convection flow with thermal conductivity 
over a vertical plate was studied by Oyem et al. (2015). Similarly, Oyem et al. (2015) studied MHD free 
convective heat transfer on reacting flow over a vertical plate with constant thermal conductivity. 
However in this paper, the Homotopy Analysis Method is used to obtain an approximate solution to a 
system of coupled nonlinear equations and the various effects some thermo-physical properties in free 
convection fluid flow past a semi-infinite flat plate. 
2. PROBLEM FORMULATION 
A steady two-dimensional, incompressible free convective fluid flow past a semi-infinite flat plate is 
considered. The flow is assumed to be taken along the plate in the x −axis and the y −axis is normal to 
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the plate. A uniform magnetic field is applied in the direction perpendicular to the plate and all the 
physical properties of the fluid are assumed to be constant. When the Boussinesq’s approximation is 
entreated under these assumptions, the flow is governed by: 
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subject to the boundary conditions 
u = 0       v = 0      T = TwC = Cwaty = 0

u → 0       T → T∞C → C∞asy → ∞
 

(5) 

where u, v are the velocity components in x, y directions respectively, ρ is density of the fluid, cp is the 
specific heat capacity at constant pressure, υ is the kinematic viscosity, g is the acceleration due to 
gravity, σ is electrical conductivity, T is temperature of the fluid, β and β0 are coefficient of volumetric 
expansion and magnetic field intensity, κ(T) is variable thermal conductivity of the fluid, D is the 
coefficient of mass diffusivity, Q0 is heat absorption coefficient and C is the fluid species concentration. 
The radiative heat flux qr is describes by the Rosseland approximation given by: 

qr = −
4σ∗

3k∗
∂T4

∂y
 (6) 

where σ∗ is the Stefan-Boltzman constant and k∗ is the mean absorption coefficient. The temperature 
difference within the flow is assumed to be sufficiently small so that T4 may be expressed as a linear 
function of temperature T using a truncated Taylor’s series about the free stream temperature T∞ and 
neglecting higher order terms, one obtains: 

T4 = 4T∞3T − 3T∞4 (7) 
Introducing the stream functions  ψ(x, y) in equation (8) into equations (1) – (4), 
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       and    v = −
∂ψ
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 (8) 

equation (1) is satisfied. In view of equations (6) and (7), equations(2) - (4) subject to the boundary 
conditions (5) is transformed using the following dimensionless quantities: 
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whereθ is the dimensionless temperature, Grthermal Grashof number,M is the magnetic field parameter, 
Gcis Solutal Grashof number, Pris Prandtl number, EcEckert number,Ra is thethermal radiation 
parameter and Sc is Schmidt number. The resulting coupled nonlinear ordinary differential equation 
becomes 
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with boundary and initial conditions: 
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f = 0 ,   f ′ = 1  ,   θ = 1  ,   ϕ = 1           atη = 0

f ′ = 0 ,   θ = 0  ,    ϕ = 0         asη → ∞
 (13) 

3. SOLUTION BY HOMOTOPY ANALYSIS METHOD (HAM) 
In order to get a physical insight into the coupled nonlinear ordinary differential equations (10) – (12) 
subject to boundary conditions (13), a new kind of Homotopy Analysis Method (HAM) with non-zero 
auxiliary parameterℏ and a non-zero auxiliary function H(η)is constructed. 
Consider the differential equation: 

N[f(η)] = 0 (14) 
whereN is a nonlinear operator and f(η) (the unknown function) is an approximate solution of equation 
(14). Let fo(η) be an initial approximation of f(η), H(η) the auxiliary function and L an auxiliary operator 
with the property such that: 

L[f(η)] = 0 when    f(η) =   0. (15) 
Instead of using the traditional Homotopy 

H[f(η; q); q] = (1 − q)L[f(η; q) − fo(η)] + qN[f(η; q)] (16) 
we consider a non-zero auxiliary parameter ℏ and a non-zero auxiliary function H(η) to construct a new 
kind of Homotopy of the form: 

H[f(η); q,ℏ , H(η)] = (1 − q)L�f�η; q,ℏ, H(η)� − fo(η)�
                                                                       +qℏH(η)N�f�η; q,ℏ, H(η)��

� (17) 

whereq ∈ [0,1] is an embedding parameter and f(η, q) is a function of η and q.When,q = 0, equation (17) 
becomes 

H[f(η); 0,ℏ , H(η) ] = L[f(η; 0,ℏ, H(η)) − fo(η)] (18) 
Thus, in finding a solution of H[f(η); 0,ℏ , H(η)]  = 0 using equation (15), the R.H.S. of equation (18) 
becomes 

f(η; 0,ℏ , H(η) ) =  fo(η) (19) 
which is the solution of  H[f(η); 0,ℏ , H(η) ] = 0. Similarly, when q = 1, equation (17) becomes 

H[f(η); 1,ℏ , H(η) ] = −ℏH(η)N�f�η; 1,ℏ, H(η)��. (20) 
Consideringequation (14) and the solutions 

H[f(η); 1,ℏ , H(η) ] = 0 
−ℏH(η)N�f�η; 1,ℏ, H(η)�� =  0 

H[f(η; 1,ℏ , H(η))] = 0 
such that ℏH(η) ≠ 0, we have 

N�f�η; 1,ℏ, H(η)�� = N[f(η)] (21) 
and in algebraic form as 

f�η; 1,ℏ, H(η)� = f(η). (22) 
Analysing the physical background and the initial boundary conditions of the non-linear differential 
problems, it is possible to know the base functions which are proper to represent the solutions, even 
without solving the given nonlinear problems. In view of the boundary conditions (4) and (5), f(η) can 
be expressed by the base function 

〈ηj exp(−nj) |j ≥ 0, n ≥ 0〉 (23) 
where the solutions of f(η),θ(η)and ϕ(η) are represented in series form as: 
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where,an,k
k , bn,k

k , cn,k
k  are coefficients. As long as the set of base functions are determined, the auxiliary 

function H(η), initial approximations fo(η),θo(η)andϕo(η) and auxiliary Linear Operators Lf , Lθ , Lϕ 
must be chosen in such a way that all solutions exist and can be expressed by this set of base functions. 
Therefore, in framing the Homotopy Analysis Method (HAM), we apply the rule of solution expressions 
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in choosing the auxiliary function H(η), initial approximations fo(η), θo(η)andϕo(η) and auxiliary linear 
operators Lf , Lθ , Lϕ. 
Invoking the rule of solution expressions for f(η), θ(η)and ϕ(η) for equations (1) – (3) together with the 
boundary conditions (4) and (5), the initial guesses for fo(η),θo(η)andϕo(η) which satisfies both the 
initial and boundary conditions (4) and (5) are given as: 

fo(η) = 1 − exp(−η)
θo(η) = exp(−η)
ϕo(η) = exp(−η)

� (27) 

with linear operators Lf , Lθ , Lϕ as 

Lf[f(η, q)] =
∂3f(η; q)
∂η3

−
∂f(η; q)
∂η

 (28) 

Lθ[θ(η, q)] =
∂2θ(η; q)
∂η2

− θ(η; q) (29) 

Lϕ[ϕ(η, q)] =
∂2ϕ(η; q)

∂η2
− ϕ(η; q). (30) 

The linear operators Lf , Lθ , Lϕtherefore, have the following properties 
Lf[C1 + C2 exp(−η) + C3 exp(η)] =  0

Lθ[C4 exp(−η) + C5 exp(η)] = 0          

Lϕ[C6 exp(−η) + C7 exp(η)] = 0          
� (31) 

where C1 , C2, C3, C4, C5, C6 and C7 are constants. The linear operators were solved using Wolfram 
Mathematica to obtain the values of skin friction coefficientf′′(0), Nusselt number−θ′(0) and Sherwood 
number−ϕ′(0) for various values of magnetic field parameterM as shown in table 1. The effect on the 
flow field in terms of velocity, temperature and concentration profiles are displayed in figures 1 – 15. 

Table 1: Values of f′′(0), −θ′(0) and −ϕ′(0)at Gr = 1.0, Gm = 1.0, Ec = 0.5, 
Sc = 0.22, Ra = 0.7, Pr = 0.71for various values of M 

M f ′′(0) −θ′(0) −ϕ′(0) 
0.5 −1.307142349845885 −0.42369812683995906 −1.5668679828480405 
1.0 −1.2929399313836567 −0.4358215769389489 −1.6241399768826683 
1.5 −1.1561828728188863 −0.44675272644788966 −1.5964497396420863 
2.0 −0.8323353371052551 −0.4502471478922309 −1.5999144272653498 

 

4. RESULTS AND DISCUSSION 
In this paper, the effect of magnetic field parameter on free convection past a semi-infinite plate had 
been considered. The effect of the emerging parameters; magnetic field parameter M, Prandtl number 
Pr, Schmidt number Sc, thermal Grashof number Gr, Solutal Grashof number Gc and Eckert number Ec 
on the flow characteristics are displayed in figures 1–15 and the results obtained in terms of skin friction 
coefficient, Nusselt number and Sherwood number for various values of magnetic field parameter are 
shown in table 1. It was observed from table 1 that the magnitude of the skin friction coefficient 
increases with increasing values of magnetic field parameter M while, the Nusselt number and 
Sherwood number decreases with increasing values of M. 
Figures 1 − 3 depicts the effect of various values of magnetic field parameter M on velocity, temperature 
and concentration profiles atGr = 1.0, Gc = 1.0, Ec = 0.5, Sc = 0.22, Ra = 0.7, Pr = 0.71. In figure 1, 
velocity profilesare considerably reduced with the increase in the value of M. This is because, increasing 
the magnetic field strength normal to the flow in an electrically conducting fluid produces a drag force 
known as the Lorentz force, which acts against the flow. Also, application of a moderate magnetic field 
normal to the flow can be used as a stabilizing mechanism, delaying the transition from laminar to 
turbulent flow. Figure 2 and 3 shows that increase in M, increases both in temperature and 
concentration profile. It shows that application of the magnetic field produces heat in the fluid and 
thereby reduces heat and mass transfers from the wall and making the fluid temperature and 
concentration distributions to increase.The effect of the Prandtl number Pr on velocity, temperature and 
concentration profiles are shown in Figures 4 − 5. From figures 4 and 6, it was observed that as Pr 
increases, velocity adn temperature profiles decreases away from the plate towards the free stream 
indicating that the fluid is increasingly viscous as Pr rises and magnitude of Pr substantially reduces the 
temperature of the fluid. But in figure 6, concentration profiles increases with increasing values of Pr. 
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Figure 1: Effect of various values of M 

on velocity profiles 
Figure 2: Temperature profiles 

for various values ofM 

  
Figure 3: Effect of various values ofM on 

concentration profiles 
Figure 4: Effect of different values ofPr on velocity 

profiles 

  
Figure 5: Effect of different values of Pr on 

temperature profiles 
Figure 6: Effect of Pr on concentration profiles 

For the precribed values of the physical parameters, the influence of the Schmidt number Sc on 
dimensionless velocity and concentration profiles are displayed in figures 7 and 8. Schmidt number Sc 
represents the ratio of momentum to the mass diffusivitythus, measuring the relative effectiveness of 
momentum and mass transport by diffusion in the hydrodynamic (velocity) and concentration (species) 
boundary layers(Gebhart et al. (1988)). From figures 7 and 8, it was revealed that as Sc increases, 
velocity and concentraton profiles decreases along the plate towards the free stream. These reductions 
in the velocity and concentration profiles clearly observes that the dimensionless concentration profile 
decay from a maximum concentration of 1.0 at η = 0 (the wall boundary condition) to zero at the 
freestream. Thus, if we critically look at Schmidt number which is dependent on mass diffusion D, an 
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increase in Sc corresponds to a decrease in mass diffusion hence, a reduction in concentration 
profiles.The effect of the Eckert number Ec on temperature profiles is illustrated in Figure9. Eckert 
number Ec expresses the ratio of a flow’s kinetic energy to the boundary layer enthalpy difference and 
is used to characterize viscous thermal dissipation of convection (Eckert and Darake (1972), Cengel and 
Cimbala (2006)). The influence of viscous dissipation on the flow field is to increase the energy, 
producing greater fluid temperature and buoyancy force. Figure 9 therefore depicts that temperature 
profiles increases with increasing values in Ecthereby, boosting temperatureas internal energy is 
increased. 

  
Figure 7: Effect of Sc on velocity profiles Figure 8: Effect of Sc on concentration profiles 

  
Figure 9: Effect of Ec on temperature profiles Figure 10: Effect of Gr on velocity profiles 

  
Figure 11: Effect of Gr on temperature profiles Figure 12: Effect of Gr on concentration profiles 
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The effects of thermal and solutal Grashof 
number on velocity, temeprature and 
concentration profiles are shown in Figures 10 −
15. Figure 10 revealed that increase in Gr results 
in the increase in velocity profiles over the 
region. It is apparent from the figure 10 that 
there is rapid rise in the dimensionless velocity 
along the wall to a peak and gradually away from 
the plate. From figures11 and 12, temperature 
and concentration profiles decrease with 
increasing values in Gr and this result is in 
agreement with Ibrahim (2014). Similarly, 
effects of the solutal Grashof number Gc on 
velocity, temperature and concentration profiles 
are presented in figures 13 – 15. It was observed 
that velocity profiles increases with increase in 
Gc(fluid velocity is boostedindicating that 
buoyancy has an acccelerating effect on the flow 
field). Likewise, both temperature and 
concentration profiles decrease in value with 
increase in Gc as shown in figures 14 and 15. 
5. CONCLUSION 
In this paper, we have been able to employ HAM 
to solve a free convection fluid flow problem past 
a semi-infinite flat plate. Analytical expressions 
for velocity, temperature and concentration 
profiles have been obtained (table 1). 
Consequently, it is agreed that HAM can be used 
alternatively to solve nonlinear coupled 
ordinary differential equations which do not 
have exact analytical solutions. It was also 
observed that the effect of the physical 
parameters on velocity, temperature and 
concentration profiles revealed that the flow 
field characteristics can be controlled using 
magnetic field. 
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