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Abstract: In this paper, effects of magnet field on the thermal performance of convective-radiative straight fin with 
temperature-dependent thermal conductivity using wavelet collocation method. The exact analytical solution is 
used to analyze the thermal performance, establish the optimum thermal design parameters and also, investigate 
the effects of thermo-geometric parameters and thermal conductivity (non-linear) parameters on the thermal 
performance of the fin. The analysis can serve as basis for comparison of any other method of analysis of the 
problem and they also provide platform for improvement in the design of fin in heat transfer equipment. 
Keywords: thermal performance; convective-radiative fin; wavelet collocation method; temperature-dependent 
thermal conductivity; magnetic field 
 
1. INTRODUCTION 
The ultimate goals of improving the design of various thermal systems such as heat exchangers, 
economizers, super heaters, conventional furnaces, gas turbines, etc. have been to achieve high thermal 
performance with reduced size and cost. These goals are often meant by the use of passive components 
such as fins and spines. The study of thermal behaviors, the effects of various parameters on the thermal 
performance and the nonlinearities in the developed thermal models of the passive devices have 
attracted a large number of research works. The past few decades have witnessed the development of 
different solution techniques for the nonlinear equations arising in the heat transfer analysis of the 
devices. Aziz and Enamul-Huq [1] applied regular perturbation expansion to study a pure convection fin 
with temperature dependent thermal conductivity. Aziz [2] extended the previous analysis to include a 
uniform internal heat generation in the fin. A few years later, Campo and Spaulding [3] applied method 
of successive approximation to predict the thermal behaviour of uniform circumferential fins. Chiu and 
Chen [4] and Arslanturk [5] adopted the Adomian decomposition Method (ADM) to obtain the 
temperature distribution in a pure convection fin with variable thermal conductivity. The same problem 
was also solved by Ganji [6] with the aid of the homotopy perturbation method originally proposed by 
He [7]. Chowdhury and Hashim [8] applied the Adomian decomposition method to evaluate the 
temperature distribution of straight rectangular fin with temperature dependent surface flux for all 
possible types of heat transfer. In the following year, Rajabi [9] employed homotopy perturbation 
method (HPM) to calculate the efficiency of straight fins with temperature-dependent thermal 
conductivity. A year later, Mustapha [10] adopted homotopy analysis method (HAM) to find the 
efficiency of straight fins with temperature-dependent thermal conductivity. Also, Coskun and Atay [11] 
utilized variational iteration method (VIM) for the analysis of convective straight and radial fins with 
temperature-dependent thermal conductivity while Languri et al.[12] applied both variation iteration 
and homotopy perturbation methods for the evaluation of efficiency of straight fins with temperature-
dependent thermal conductivity. Coskun and Atay [13] applied variational iteration method to analyze 
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the efficiency of convective straight fins with temperature-dependent thermal conductivity. In the same 
year, Atay and Coskum [14] employed variation iteration and finite element methods to carry out 
comparative analysis of power-law-fin type problems. Domairry and Fazeli [15] used Homotopy 
analysis method to determine the efficiency of straight fins with temperature-dependent thermal 
conductivity.  Hosseini et al. [16] applied homotopy analysis method to provide approximate but 
accurate solution of heat transfer in fin with temperature-dependent internal heat generation and 
thermal conductivity. Joneidiet al. [17], Moradi and Ahmadikia [18] Moradi [19], Mosayebidorchehet al. 
[20], Ghasemiet al. [21], Sandri et al. [22], Ganji and Dogonchi [23] presented analytical solution for fin 
with temperature dependent thermal coefficient using differential transform method (DTM). 
The above reviewed approximate analytical methods solve nonlinear differential equations without 
linearization, without restrictive assumptions or any perturbation, without discretization or 
approximation of the derivatives. However, most of the approximate methods give accurate predictions 
only when the nonlinearities are weak and they fail to predict accurate solutions for strong nonlinear 
models. Also, when they are routinely implemented, they can sometimes lead to erroneous results [24, 
25]. Additionally, some of them require more mathematical manipulations and are not applicable to all 
problems, and thus suffer a lack of generality.  For example,  DTM proved to be more effective than most 
of the other approximate analytical solutions as it does not require many computations as carried out 
in ADM, HAM, HPM, and VIM. However, the transformation of the nonlinear equations and the 
development of equivalent recurrence equations for the nonlinear equations using DTM proved 
somehow difficult in some nonlinear system such as in rational Duffing oscillator, irrational nonlinear 
Duffing oscillator, finite extensibility nonlinear oscillator. Moreover, the determination of Adomian 
polynomials as carried out in ADM, the restrictions of HPM to weakly nonlinear problems as established 
in literatures, the lack of rigorous theories or proper guidance for choosing initial approximation, 
auxiliary linear operators, auxiliary functions, and auxiliary parameters in HAM and the search 
Langrange multiplier as carried in VIM, and the challenges associated with proper construction of the 
approximating functions for arbitrary domains or geometry of interest as in Galerkin weighted residual 
method (GWRM), least square method (LSM) and collocation method (CM) are some of the difficulties 
in applying these approximate analytical methods. Therefore, the quest for comparatively simple, 
flexible, generic and highly accurate analytical solutions continues. In other to reduce the computation 
cost and time in the analysis of nonlinear problems, different wavelet collocation methods such as 
Legendre, Haar, Chebyshev, Leibnitz-Haar, cubic B-spline, sympletic, multi-sympletic, adaptive, multi-
level, interpolating, rational, spectral, ultraspherical, first split-step, sine-cosine and semiorthogonal B-
spline wavelet collocation methods have adopted to solve different nonlinear equations.  The ease of 
use, simplicity and fast rate of convergence have in recent times made these methods gain popularity in 
nonlinear analysis of systems and they have been applied to nonlinear problems in heat transfer analysis 
of fins [26-30]. Also, the ability of these wavelet collocation methods to solve the nonlinear differential 
equations directly without simplification, linearization, perturbation, Taylor’s series expansion, mesh 
independent study, determination of auxiliary parameters, functions, Lagrange multiplier, Adomian 
polynomials and recursive relations as carried out HAM, VIM, ADM, VIM, DTM etc. Therefore, in this 
paper, effects of magnet field on the thermal performance of convective-radiative straight fin with 
temperature-dependent thermal conductivity using wavelet collocation method. The wavelet 
collocation method is mathematically very simple, easy and fast.  It is an efficient and powerful in solving 
wide class of linear and nonlinear differential equations. In recent times, the method has gained the 
popularity and reputation of being a very effective tool for many practical applications. From the 
computational simulation point of view, it has been established that the numerical approximate solution 
provided by the method is much closer to the exact solutions in many practical applications of the 
method. The results of obtained by LWCM are in excellent agreements with exact analytical solutions 
(for the linear model) and the direct numerical solutions (for the nonlinear model). 
2. PROBLEM FORMULATION 
Consider a convective-radiative straight fin of temperature-dependent thermal conductivity k(T), length 
L and thickness δ that is exposed on both faces to a convective environment at temperature aT and with 
heat transfer co-efficient h and subjected to magnetic field as shown in Figure 1, assuming that the heat 
flow in the fin and its temperature remain constant with time, the temperature of the medium 
surrounding the fin is uniform, the fin base temperature is uniform, there is no contact resistance where 
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the base of the fin joins the prime surface, also the 
fin thickness is small compared with its width and 
length, so that temperature gradients across the fin 
thickness and heat transfer from the edges of the 
fin may be neglected. The dimension x pertains to 
the length coordinate which has its origin at the tip 
of the fin and has a positive orientation from the fin 
tip to the fin base.  Based on Darcy’s model and 
following the above assumptions, the thermal 
energy balance could be expressed as stated in Eq. 
(1). 
 

                                                                                      (1) 
 
where 

                                                                                                                                                       (2) 
 
As dx→0, Eq. (1) reduces  
                                                                                                                                                        

                                                                                                                                                       (3)                                                                                                                       
 
From Fourier’s law of heat conduction, the rate of heat conduction in the fin is given by  
 

                                                                                                                                                       (4)                   
            
where 
 
 
Following Rosseland diffusion approximation, the radiation heat transfer rate is  

                                                                                                                                                       (5) 
 
 
Therefore, the total rate of heat transfer is given by  

                                                                                                                                                       (6) 
 
 
Substituting Eq. (6) into Eq. (3), we have 
 
                            

                                                                                                                                                       (7) 
Further simplification of Eq. (10) gives the governing differential equation for the fin as  
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After substitution of Eq. (12) into Eq.(10), taking the magnetic field term as a linear function of 
temperature, we have 
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Figure 1. Schematic of the convective-radiative 

longitudinal porous fin with magnetic field 
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The case considered in this work is a situation where small temperature difference exists within the 
material during the heat flow. This actually necessitated the use of temperature-invariant physical and 
thermal properties of the fin. Also, it has been established that under such scenario, the term T4 can be 
expressed as a linear function of temperature. Therefore, we have 

4 3 44 3a aT T T T≅ −                                                                               (14) 
On substituting Eq. (14) into Eq. (13), we arrived at 
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On introducing the following dimensionless parameters in Eq. (16) into Eq. (16),  
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we arrived at the dimensionless form of the governing Eq. (13) as  
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which is the same as
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and the dimensionless boundary conditions 
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For conveniences, the asterisk will be removed in the subsequent analysis 
3. METHOD OF SOLUTION: LEGENDRE WAVELET COLLOCATION METHOD 
There is a difficulty in developing an explicit exact analytical/closed-form solution for the above non-
linear Eq. (19). Therefore, in this work, we apply Legendre wavelet collocation method. The wavelet 
algorithm is based on collocation method and the procedures for applications are described as follows.  
⧉ Wavelets: Continuous wavelet are defined by the following formula 

( )
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                                                (22) 

where a and b are dilation and translation parameters, respectively. 
The Legendre wavelets defined on the interval [0, 1] is given by  

( ) ( ) ( )21
2

,

ˆ ˆ1 1ˆ2 2 ,
2 2

0

k k
m k k

n m

n nm p X n
X

otherwise
ψ

− − + − ≤= 


                               (23) 

where m=0,1,…,M-1 and n=1,2,...2k-1. Pm(x) is the Legendre polynomial of order m 
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A function f(x) defined in domain [0, 1] can be expressed as 
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where ,n mc  =< ( )f X , ( ),n m Xψ > in which <…> denotes the inner product 
Taking some terms in infinite series, we can write Eq. (25) as  
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where C and ( )Xψ  are M x1 matrices given by 
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(i) Property of the product of two Legendre wavelets 
If E is a given wavelets vector, then we have the property 

       
ˆT T TE Eψψ ψ=                                                                              (28) 

(ii) Operational matrix of integration: The integration of wavelets ( )Xψ  which is defined in Eq. (23) 
can be obtained as  
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⧉ Legendre Wavelet Collation Method 
Let   ( ) ( )TX C Xθ ψ′′ =                                                               (30) 

Integrating Eq. (15) with respect to x from 0 to x, we have 
( ) ( ) ( ) ( ) ( ) ( )0 0 0T TX C P x X C P x sinceθ θ ψ θ ψ θ′ ′ ′ ′= + ⇒ = =              (31)                                                                   

If we integrate Eq. (31) and use the boundary conditions, we arrived at  
( ) ( ) ( )20 TX C P Xθ θ ψ= +                                                              (32) 

Put X=1 in (31), we have 
( ) ( )20 1 1TC Pθ ψ= − , since ( )1 1θ = , we obtain                                             (33) 

On substituting Eq. (33) into E.(32) 
( ) ( ) ( )2 21 1T TX C P C P Xθ ψ ψ′ = − +                                                       (34)                                                                                           



 

184 | F a s c i c u l e  4   

Again, integrating above equation, with respect to X from 0 to X, we obtain 
( ) ( ) ( )2 21 1T TX C P C P Xθ ψ ψ= − +                                                        (35) 

Substituting, ( )Xθ ′′ , ( )Xθ ′′ and ( )Xθ ′′  in Eq. (31), we arrived at 
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On expanding Eq. (36), we have 
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Choosing n collocation points i.e. xi, i =1,2,3,...,n in the interval (0,1), at which residual R(x, ci) equal to 
zero. The number of such points gives the number of coefficient ci, i=1,2,3,..,n.  

1 11 1 1 2 2 2 2
,0, ,1,....., , 1, ,1,......, , 1, ,1,..., , 1k k

T
C c c c M c c M c c M− − = − − −   

Thus, we get R(X, c1,c2,c3,...,cn)=0, i =1,2,3,...,n.  
The above Eq. (37) gives system of nonlinear equations which are solved simultaneously using Newton-
Raphson method and the values of C are obtained. Substituting the values of C in Eq. (20), the 
approximate solution of ( )Xθ is found. 
4. RESULTS AND DISCUSSION 
Effects of thermo-geometric term, radiation number and magnetic number (Hartmann number) on the 
dimensionless temperature distribution and by extension on the thermal performance of the fin are 
shown in Figs 2 and 3. From the figures, as the magnetic parameter increases, the temperature decreases 
rapidly and the rate of heat transfer (the convective-radiative heat transfer) through the fin increases 
as the temperature in the fin drops faster (becomes steeper reflecting high base heat flow rates) as 
depicted in the figures. The rapid decrease in fin temperature due to increase in the magnetic parameter 
is because as Hartmann number increases, the magnetic force increases and this in turn increases the 
magnetic field strength which consequently decreases the temperature of the fin as shown in the figures. 
Therefore, the thermal performance of the fin is increased by the presence of the magnetic field. This is 
in agreement with the deduction from works of Hoshyar et al. [31]. Also, the figures depict the effects of 
nonlinear parameter or temperature-dependent thermal conductivity term on the thermal performance 
of the fin. From the figures, it could be deducted that the nonlinear thermal conductivity parameter has 
direct and significant effects on the rate of heat transfer of the fin.  

 
Figure 2. Effects of radiation and Hartmann numbers 
on the temperature distribution in the fin when β=0.5 

 
Figure 3. Effects of radiation and Hartmann numbers 
on the temperature distribution in the fin when β=1.5 

Figs. 4 and 5 show the effects of non-linear thermal conductivity on the fin thermal performance under 
different thermo-geometric parameter, radiation number and Hartmann number. The results show that 
performance of the fin temperature decreases with increase in the nonlinear term or the thermal 
conductivity number. Also, the figures depict that as the thermo-geometric parameter increases, the rate 
of heat transfer through the fin increases as the temperature in the fin drops faster (becomes steeper 
reflecting high base heat flow rates). The profile has steepest temperature gradient at lower value of the 
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thermo-geometric parameter, but its much higher value gotten from the lower value of thermal 
conductivity than the other values of M in the profiles produces a lower heat-transfer rate.  

 
Figure 4. Effects of non-linear parameter on the 

temperature distribution in the fin when M=0.50, 
N=0.25, H=0.50 

 
Figure 5. Effects of non-linear parameter on the 

temperature distribution in the fin when M=1.50, 
N=0.75, H=1.00 

5. CONCLUSION 
In this work, effects of magnetic field, radiation, thermo-geometric and the nonlinear thermal 
conductivity parameters on the thermal performance of the fin have been investigated through the 
developed exact analytical solution using partial Noether method. From the analysis, it shows that the 
thermal performance of the fin increases as the magnetic, radiative and thermo-geometric parameters 
increase. The exact analytical solution can serve as an accurate benchmark for numerical and 
approximate analytical solutions as it shows the direct and precise relationship between the models 
parameters. 

Nomenclature 
L - Length of the fin 
Ac - cross sectional area of the fins 

Ap  - profile area of the fins 

h -  heat transfer coefficient 
H - Hartmann number 
k - thermal conductivity of the fin material 
ka - thermal conductivity of the fin material at ambient temperature   
M - dimensionless thermo-geometric fin parameter 
m2 -  thermo-geometric fin parameter  
N - dimensionless radiation number 
P - perimeter of the fin 

T- Temperature 
Ta - ambient temperature 
Tb - Temperature at the base of the fin 
x - fin axial distance, m 
X - dimensionless length of the fin 
Greek Symbols 
β - thermal conductivity parameter or 
non-linear parameter 
δ  -  thickness of the fin, m 
θ  - dimensionless temperature 
ε  - emmisivity of the fin 
σ - Stefan-Boltmann consta 
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