¹·Harjit Singh MANGAT, ²·Harpuneet SINGH

ANALYZING THE JUDGEMENT OF TEXTILE FIRMS OF PUNJAB (INDIA) TOWARDS THE GLITCHES RELATED TO ELECTRIC POWER AND LEVEL OF OCCURRENCE OF POWER OUTAGES

^{1.} Department of Mechanical Engineering, I.K. Gujral Punjab Technical University, Kapurthala, Punjab, INDIA ^{2.} Department of Production Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, INDIA

Abstract: A demographic research was conducted to record the judgment of the textile firms from Punjab (India) towards the different origin and causes of power outages in order to know the position of the connected power systems of the public utility company- Punjab State Power Corporation Limited over a seven-point ordinal Likert scales. From April 2015 to April 2017, a successful response from 148 textile firms was obtained falling in the areas of Central, North and South Punjab. The answers were recorded on a guestionnaire schedule by conducting both personal interviews and dropping the schedules at the targeted firms for a stipulated period of time. The respondents were advised to answer the questions keeping in mind the years from 2010 to 2014. The Kruskal Wallis and Friedman's tests with post hoc were applied for the independent and related samples, respectively. The effect sizes were also calculated from the Kruskal Wallis and Mann Whitney test statistics. The power system reliability issues were found highly dominant over the power quality issues. The higher rankings towards the occurrence of power outages because of the failures occurring in infrastructure and equipment showed that the performance of the power systems was not up to the mark. The textile firms from North and South Punjab ranked higher on majority of the dependent variables as compared to the Central Punjab which indicated that the impact of power outages was considerably higher in these regions.

Keywords: power outages, causes, questionnaire schedule, utility, textile industries, Punjab (India)

1. INTRODUCTION

An electric power outage is one of the major cause of downtime in the industrial sector. The occurrence of the electric power outages in the manufacturing and commercial businesses not only results in the economic losses but also impacts the image of the firms in this highly competitive world. The availability of uninterrupted electric power supply at the firms is required in order hold a good image among the consumers and to make the deliveries to the clients in a stipulated period of time. In order to accomplish this goal, the reliability of the power systems connected to the firms is required as high as possible, which can only be achieved if these systems have the ability to withstand sudden disturbances and have the capacity to meet the required demand of the customers. Around 94% of the total energy not served resulting from outages was due to unplanned outages and only 6% can be attributable to planned outages [6]. Power is Africa's major infrastructure weak point and companies in Senegal, Tanzania, and Burundi experienced power outages for an average of 45, 63, and 144 [2]. Increasing numbers of blackouts are predicted due to growing uncertainties in supply and growing certainties in demand. Definite electrical power is also under risk because of supply constraint: fossil fuel diminution and the transient nature of renewable energy sources [5]. During the year 2009 in Cameroon, most of the firms registered nearly 275 to 353 short length outages that caused in an upsurge of 13 to 20% of the expenditures associated to the repair of the equipment damage [1]. The purpose of the presented research was to differentiate and compare among the ratings of the textile firms of Punjab towards the variables depicting the origin of electric power outages, level of satisfaction towards the restoration time taken by the utility in an event of different types of outages and level of occurrence of different types of power outages based on their type and length, on an ordinal seven point Likert scales and Likert scale items.

2. METHODOLOGY

With a simple random sampling approach, 400 textile firms were randomly selected from a specially prepared list of total 1163 registered textile firms from a database of ministry of corporate affairs and ministry of micro, small and medium enterprises, out of which 148 were responded to a questionnaire schedule through conducting the interviews and dropping the schedules with the firms for a specified period of time. The districts where the textile firms have very low concentration were not considered in the list and only the Ludhiana from Central Punjab, Amritsar and Jalandhar from North Punjab, and Patiala and Mohali from South Punjab were targeted because of the high concentration of textile firms in these districts. The judgment of the respondents from Central, North and South Punjab where the textile firms were highly concentrated was recorded for a time frame from 2010 to 2014 over a period of two years from April 2015 to April 2017. During this duration, 84 firms responded from the Central Punjab, 40 firms replied from the North Punjab and 24 industries answered from the South Punjab. A partially filled questionnaires were discarded and only the completely filled questionnaires were considered for the data analysis. As the number of large and medium scale firms was marginally very

small as compared to micro and small scale firms, the response of only micro and small scale firms was taken. Moreover, the response of large and medium scale firms was found very poor because of their tight schedules and decision of dropping these firms from the study was taken at the early stages of the research. The distinctiveness of the presented research is the application of ordinal approach applied to the study which revealed the substantial amount of information without the use of time consuming hypothetical calculations which is evident from the literature review. This approach can be very beneficial to assess the condition of the power systems, especially, when the data related to types and frequency of outages are not properly maintained at the local regional offices of the utilities.

3. DATA ANALYSIS AND DISCUSSIONS

Two software, SPSS 24 and Microsoft excel were used for the analysis and visualization of the data. Tableau 2018.1 software was specifically used for making the 100 percent centred diverged stacked charts in order to show the distribution of the textile firms among the seven categories of the survey scale. For the estimation of Krippendorff's Alpha- an ordinal reliability measure, SPSS syntax (macro) was used which was not available in SPSS 24 [3]. The internal consistency and interrater reliability measures were calculated using Cronbach's Alpha and Krippendorff's Alpha, respectively, for the different sections of the survey as shown in the Table 3.1. The Cronbach's Alpha for independent samples was found between 0.69 to 0.92. The Krippendorff's Alpha (K-Alpha) for the levels of independent variable samples was calculated as 0.80 and 0.78, respectively. All the reliability measures were found in the acceptance zone. The values of Kendall's W between 0.65 and 0.78 for the different sections of the study are indicating that the respondents have been unanimous, and each respondent has assigned almost the same order to the variables under consideration.

	R	eliability l	Measurement o			April 2	015 - Apr	il 2017				
Independent Va		-	Districts Punjab	Responders Textile Industries	ł		ability orff's Alph	ia		Reliability Cronbach's Alpha		
LUCATION		ſ	unjab	Textile industries	В	D	Ei	Fii	В	D	Ei	Fii
1. Central Pur	njab	Lu	udhiana	84	0.73	0.65	0.53	0.71	0.86	0.85	0.69	0.92
2. North Pun	jab	Amrits	ar Jalandhar	40	0.69	0.64	0.82	0.67	0.60	0.65	0.09	0.92
3. South Pun	ijab	Patia	ala Mohali	24	0.64	0.61	0.85	0.60	Confidence Level= 0.95		.95	
Total		Majo	or Districts	148	0.63	0.50	0.51	0.44	Sig	Significance Level= 0.05		
	K	endall's C	oefficient of Co	ncordance- Part B= 0.78 Part D= 0.72 Part Ei= 0.6					Fii= 0.65			
Survey Scale		1	2	3	4	4		5		6		,
Part B	Not	at all	Slightly	Somewhat	Modera	ately	Consic	lerably	Hig	ghly	Extremely	
rait D	conce	erned	concerned	concerned	concer	ned	conce	erned	conc	erned	conce	erned
Part Ei	Dort Ei Completely		Mostly	Somewhat	Somewhat Neutral		Somewhat		Мс	stly	Comp	letely
Tuit Li	dissat	tisfied	dissatisfied	dissatisfied	ncut	ui	satis	fied	sati	sfied	satis	fied
Part D and Fii	Part D and Fii Never Rarely		Rarely	Occasionally	Someti	mes	Frequ	ently	Usually		Every	time

Table 3.1 Reliability Measurement of the Survey

The independent sample Kruskal Wallis test and the related sample Friedman test were applied to know the statistically significant differences between the distributions of independent variables on the ordinal dependent variables and between the distributions of related dependent variables, respectively. A Dunn's Bonferroni post hoc test was used to identify the statistically significant differences for both independent and related sample pairs. A Kruskal Wallis H and Mann Whitney U statistic were used to calculate the effect sizes for the groups and significant pairs. The zone with values of effect sizes from 0.060-0.110 is known as the zone of intermediate effect and values more than 0.140 shows the large effect. The values which were falling in the "no" and "small" effect zone area were not considered [5]. A detailed statistical analysis of the dependent variables (B1-B9) associated with the "level of concern towards the power system reliability and quality issues" is presented in the Table 3.2. A Kruskal-Wallis test was applied on the dependent variables from B1 to B9 to examine if there were differences in level of concern scores between groups that differed in their geographical region: the "Central Punjab" (n = 84), "North Punjab" (n = 40) and "South Punjab" (n = 24) geographical region level groups. A level of concern scores was statistically significantly different between the different levels of geographical region group based on the test statistics "H (Degree of Freedom) or x2 (Degree of Freedom)" with p-value of 0.000 for the variables B1, B3-B6, B8 and B9 and 0.002 and 0.037 for the variables B2 and B7, respectively. The H or x2 test statistics values for the variables B1, B2, B3, B4, B5, B6, B7, B8 and B9 are 62.276, 12.372, 44.452, 63.379, 55.224, 52.976, 6.606, 21.091 and 72.900, respectively. Next, by using these H-statistics values, effect sizes (η_{H^2}) were calculated for all the variables using the online effect size calculator and were found in the zone of large effect except for the variables B2 with an effect size of 0.072 and B7 with 0.032 which were found in the zone of intermediate and small effect. The effect sizes calculated for other variables B1, B3, B4, B5, B6, B8 and B9 were seen in the zone of large effect with values 0.416, 0.293, 0.423, 0.367, 0.352, 0.132 and 0.489, respectively. Afterwards, pairwise comparisons were made using Dunn's (1964) procedure. A Bonferroni correction for multiple comparisons was done with statistical significance accepted at the p < .0167 level. This post hoc analysis exposed statistically significant differences in the level of concern scores between Central Punjab and North Punjab for the variables B1, B3-B6, B8 and B9 with p- values equal to 0.000 and for the variables B2 and B7 with p-values of 0.005 and 0.031, respectively. Also, pairwise comparisons of Central Punjab and South Punjab for the variables B1, B3-B6 and B9 have shown

statistically significant differences with p values of 0.000 and for the variables B2 and B8 with p values of 0.049 and 0.017, respectively, however, no statistical significant difference was found for the variable B7. None of the pairwise comparison have shown statistically significant differences between the North Punjab and South Punjab geographical region groups for any of the dependent variables. For the variable B2, statistically significant difference were seen only between Central and North Punjab groups among the three group pairwise comparisons and for the variable B7, two group pairwise comparisons, Central and North Punjab, and Central and South Punjab have shown statistically significant difference. For all the variables, mean rank was found lower for the Central Punjab than North and South Punjab which is evident from the Table 3.2. After carefully observing the median values and crosstab calculations showing the percentage distribution of the sample, both the groups North and South Punjab were responded similarly with higher ranks on seven-point scale as compared to Central Punjab which showed that the textile firms from North and South Punjab were highly concerned towards the power system reliability and quality issues. However, a closer look on the results of the variables portrayed that the power reliability issues were ranked noticeably higher than the power quality issues which revealed that the reliability problems such as unplanned outages, planned outages and insufficient generation (leads to load shedding) in the power system were the main reason of their apprehension during the period from 2010-2014.

	Table 3.2. Leve		K-W	Visual			onferroni D		Hoc	
Dependent	Location	Median	Mean	Mean	Group	Test	Standard			Adjusted
Variables	Location	Wiedian	Rank	Rank	Pairs	Statistics	Error	Statistes	p-value	p-value
	1 Central Punjab	2	51.15		1-2	-57.333	7.965	-7.198	0.000	0.000
B1 System	2 North Punjab	5	108.49		2-3	8.925	10.706	0.834	0.404	1.000
voltage fluctuations	3 South Punjab	3.5	99.56		3-1	-48.408	9.597	-5.044	0.000	0.000
Internations	p = 0.000 H = 62	.276, df =	2 η2(H)	= 0.42	U(1-2)	= 389 (0.00	0), $\eta 2 = 0.38$	U(3-1)= 3	38 (0.000)	, η2=0.23
	1 Central Punjab	2	64.45		1-2	-23.891	7.661	-3.118	0.002	0.005
B2 System	2 North Punjab	3	88.34		2-3	1.713	10.297	0.166	0.868	1.000
frequency fluctuations	3 South Punjab	2.5	86.63		3-1	-22.179	9.231	-2.403	0.016	0.049
Internations	p = 0.002 H = 12	.372, df =	2 η2(H) =	= 0.07	U(1-2)=	=1129 (0.00	1), $\eta 2 = 0.07$	U(3-1)=7	14 (0.019)	, η2= <i>0.04</i>
	1 Central Punjab	2	55.34		1-2	-41.761	7.732	-5.401	0.000	0.000
B3 System	2 North Punjab	3	97.1		2-3	-6.796	10.392	-0.654	0.513	1.000
transient faults	3 South Punjab	3	103.9		3-1	-48.557	9.316	-5.212	0.000	0.000
	p = 0.000 H = 44	.452, df =	2 η2(H) =	= 0.30	U(1-2)=	700.5 (0.00	0), η2= 0.22	2 U(3-1)=	378 (0.000)), η2= 0.20
	1 Central Punjab	4	50.98		1-2	-56.511	7.929	-7.127	0.000	0.000
B4 System	2 North Punjab	5	107.49		2-3	5.633	10.657	0.529	0.597	1.000
switching/ operating errors	3 South Punjab	5	101.85		3-1	-50.878	9.553	-5.326	0.000	0.000
operating errors	p = 0.000 H = 63	.379, df=	2 η2(H) =	= 0.42	U(1-2)=	399 (0.00	0), η2= 0.38	U(3-1)=	313 (0.000)), η2= 0.24
B5 System	1 Central Punjab	5	53.33		1-2	-55.835	7.846	-7.116	0.000	0.000
protection/	2 North Punjab	6	109.16		2-3	18.329	10.545	1.738	0.082	0.247
relaying	3 South Punjab	5	90.83		3-1	-37.506	9.453	-3.968	0.000	0.000
problems	p= 0.000 H= 55.2	224, df= 2	$ \eta^{2}(H) =$	0.37	U(1-2)=	453.5 (0.00	0), η2= 0.35	5 U(3-1)=4	456 (0.000)), η2= 0.15
	1 Central Punjab	4	53.09		1-2	-52.898	7.930	-6.671	0.000	0.000
B6 System transmission	2 North Punjab	5	105.99		2-3	9.029	10.658	0.847	0.397	1.000
overloading	3 South Punjab	5	96.96		3-1	-43.869	9.554	-4.592	0.000	0.000
ovenouung	p= 0.000 H= 52.9	976, df= 2	$ \eta 2(H) =$	0.35	U(1-2)=	479 (0.000), $\eta 2 = 0.33$	U(3-1)=4	10.5 (0.000), η2=0.18
B7 System	1 Central Punjab	6	68.4		1-2	-19.395	7.553	-2.568	0.010	0.031
supply deficit	2 North Punjab	6	87.8		2-3	14.133	10.152	1.392	0.164	0.492
(insufficient	3 South Punjab	6	73.67		3-1	-5.262	9.100	-0.578	0.563	1.000
generation)	p = 0.037 H = 6.0	606, df = 2	$2 \eta 2(H) =$	0.03	U(1-2)=	1244 (0.011), η2= 0.04	U(3-1)=9	32 (0.534)	, η2=0.003
	1 Central Punjab	6	61.68		1-2	-32.321	7.564	-4.273	0.000	0.000
B8 Unplanned	2 North Punjab	7	94		2-3	7.125	10.166	0.701	0.483	1.000
power outages	3 South Punjab	7	86.88		3-1	-25.196	9.113	-2.765	0.006	0.017
	p = 0.000 H = 21	.091, df=	2 η2(H) =	= 0.13	U(1-2)=	= 947 (0.000)), η2= 0.12	U(3-1)=6	64 (0.006)	, η2= <i>0.06</i>
	1 Central Punjab	3	48.94		1-2	-59.510	8.016	-7.424	0.000	0.000
B9 Planned	2 North Punjab	5	108.45		2-3	1.075	10.773	0.100	0.921	1.000
power outages	3 South Punjab	5	107.38		3-1	-58.435	9.658	-6.051	0.000	0.000
	p= 0.000 H= 72.9	900, df= 2	$ \eta^{2}(H) = 0$	0.49	U(1-2)=	= 345 (0.000	0), $\eta 2 = 0.41$	U(3-1)= 1	96 (0.000)	$, \eta 2 = 0.33 \mid$
ilarlu a statistic							1 11	6		

Table 3.2. Level of Concern towards the Power System Reliability and Quality Issues

Similarly, a statistical analysis of the dependent variables (D1-D5) related with the "occurrence of the outages based on the fault occurred in the electric components" is shown in the Table 3.3. A Kruskal-Wallis test was conducted on the dependent variables from D1 to D5 to determine if there were differences in level of frequency of occurrence scores between groups that varied in their geographical region: the "Central Punjab" (n = 84), "North Punjab" (n = 40) and "South Punjab" (n = 24) geographical region level groups. A level of concern scores was statistically significantly different between the different levels of geographical region group based on the test statistics "H (Degree of Freedom) or χ 2 (Degree of Freedom)" with p-value of 0.000 for all the variables. The H or χ 2 test statistics values for the variables D1, D2, D3, D4 and D5 are 96.937, 26.804, 103.927, 108.059 and 51.586, respectively. By using the H-statistics, effect sizes (η_{H}^2) were calculated for all the variables using the online effect size calculator. The effect sizes calculated for the variables D1, D2, D3, D4 and

D5 were found in the zone of large effect with values 0.655, 0.171, 0.703, 0.731 and 0.342, respectively. Then, pairwise comparisons were made using Dunn's (1964) procedure. A Bonferroni correction for multiple comparisons was applied with statistical significance accepted at the p < 0.0167 level. This post hoc analysis exposed statistically significant differences in the level of frequency of occurrence scores between Central Punjab and North Punjab for all the variables with p-values equal to 0.000. Also, pairwise comparisons of Central Punjab and South Punjab for all the variables have shown statistically significant differences with p values of 0.000 except for the variable D2 with p-value equal to 0.004. No statistically significant differences were found considering the pairwise comparison between the North Punjab and South Punjab for any of the dependent variables. For all the variables, mean rank was found lower for the Central Punjab than North Punjab and South Punjab which is evident from the Table 3.3. Crosstabulation calculations showing the percentage distribution of the sample revealed that both the groups North and South Punjab were responded almost in a similar manner with elevated ranks on seven-point scale in contrast with the Central Punjab which presented that the textile firms from North and South Punjab were found exposed to occurrence of more number of outages based on the fault happening in the electric components such as overhead lines, underground cables, transformers, switchgear and fuses. Further, the results of the variables described that the occurrence of electric power outages due to the fault occurring in the overhead lines, transformers and fuses were ranked similarly and markedly higher than the outages originating from switchgear followed by the underground cables which was guestioning the condition and protection of electric infrastructure of the public utility- Punjab State Power Corporation Limited considering the period from 2010-2014. Table 3.3. Occurrence of the Power Outages Based on the Fault Occurred in the Electric Components

Table 3.	S. Occurrence of t	IIE FOWE	i Oulayes	Daseu Ul	וופומי				iponents)
Denendent			K-W	Visual		Bo	onferroni D	unn's Post	Hoc	
Dependent Variables	Location	Median	Mean	Mean	Group	Test	Standard	Test Std.	1	Adjusted
variables			Rank	Rank	Pairs	Statistics	Error	Statistcs	p-value	p-value
	1 Central Punjab	4	45.73214		1-2	-67.030	7.824	-8.567	0.000	0.000
D1 Overhead lines	2 North Punjab	6	112.7625		2-3	1.346	10.516	0.128	0.898	1.000
Di Overneau illes	3 South Punjab	6	111.4167		3-1	-65.685	9.426	-6.968	0.000	0.000
	p= 0.000 H= 96.9	937, df= 2	$ \eta^{2}(H) = 0$	0.66	U(1-2)=	153.5 (0.00	00), η2= 0.5	4 U(3-1)=	118 (0.000)), $\eta 2 = 0.40$
	1 Central Punjab	3	62.20833		1-2	-30.642	6.413	-4.778	0.000	0.000
D2 Underground	2 North Punjab	3	92.85		2-3	5.912	8.620	0.686	0.493	1.000
cables	3 South Punjab	3	86.9375		3-1	-24.729	7.727	-3.200	0.001	0.004
	p = 0.000 H = 26.8	304 , df=2	2 η2(H) =	0.17	U(1-2)=	990 (0.000), $\eta 2 = 0.11$	U(3-1)= 6	65.5 (0.00	1), $\eta 2 = 0.06$
	1 Central Punjab	5	45.15476		1-2	-69.033	7.711	-8.953	0.000	0.000
D3 Transformers/	2 North Punjab	6	114.1875		2-3	3.125	10.363	0.302	0.763	1.000
Equipment	3 South Punjab	6	111.0625		3-1	-65.908	9.290	-7.095	0.000	0.000
	p = 0.000 H = 103	.927, df=	2 η2(H) =	0.70	U(1-2)=	119 (0.000), η2=0.56	U(3-1)= 10	04 (0.000),	$\eta 2=0.41 $
	1 Central Punjab	4	43.92857		1-2	-73.271	7.890	-9.287	0.000	0.000
D4 Switchgears	2 North Punjab	5	117.2		2-3	6.867	10.604	0.648	0.517	1.000
D4 Switchgears	3 South Punjab	5	110.3333		3-1	-66.405	9.506	-6.986	0.000	0.000
	p = 0.000 H = 108	.059, df=	2 η2(H) =	0.73	U(1-2)=	39 (0.000)	, η2=0.62	U(3-1)= 81 ((0.000), η2	= 0.44
	1 Central Punjab	5	54.81548		1-2	-47.860	7.366	-6.497	0.000	0.000
D5 Fuses	2 North Punjab	6	102.675		2-3	6.238	9.901	0.630	0.529	1.000
1051 4303	3 South Punjab	6	96.4375		3-1	-41.622	8.875	-4.690	0.000	0.000
	p= 0.000 H= 51.5	586, df= 2	$ \eta^{2}(H) = 0$	0.34	U(1-2)=	604 (0.000), η2= 0.27	U(3-1)= 43	30.5 (0.000), $\eta 2 = 0.17$

Likewise again, a statistical analysis of the dependent variables (E1i-E5i) linked with the "level of satisfaction towards the restoration time taken by the utility during the different outage types" is shown in the Table 3.4. A Kruskal-Wallis test was conducted on the dependent variables from E1i to E5i to determine if there were differences in level of satisfaction scores between groups that varied in their geographical region: the "Central Punjab" (n = 84), "North Punjab" (n = 40) and "South Punjab" (n = 24) geographical region level groups. A level of satisfaction scores was statistically significantly different between the different levels of geographical region group based on the test statistics "H (Degree of Freedom) or x2 (Degree of Freedom)" with p-value of 0.000 for all the variables except E4i in which the null hypothesis is accepted. The H or x2 test statistics values for the variables E1i, E2i, E3i and E5i are 72.424, 117.580, 15.960 and 72.911, respectively. Hstatistics values were used to calculate the effect sizes $(\eta_{\rm H}^2)$ for all the significant variables using the online effect size calculator. The effect sizes calculated for the variables E1i, E2i, E3i and E5i were found in the zone of large effect with values 0.486, 0.797, 0.096 and 0.489, respectively. Then, pairwise comparisons were made using Dunn's (1964) procedure. A Bonferroni correction for multiple comparisons was applied with statistical significance accepted at the p < 0.0167 level. This post hoc analysis exposed statistically significant differences in the level of satisfaction scores between Central Punjab and North Punjab for all the significant variables with p-values equal to 0.000 except for the variable E3i with p-value equal to 0.001. Also, pairwise comparisons of Central Punjab and South Punjab for all the significant variables have shown statistically significant differences with p values of 0.000 except for the variable E3i with p-value equal to 0.014. No statistically significant differences were found considering the pairwise comparison between the North Punjab and South Punjab for any of the dependent variables. For all the variables, mean rank was found higher for the Central Punjab than North Punjab and South Punjab which is evident from the Table 3.4. Crosstabulation results showing the percentage

distribution of the sample indicated that both the groups North and South Punjab were responded nearly alike with lower ranks on seven-point scale than the Central Punjab. This showed that the textile firms from Central Punjab were slightly more satisfied than the North and South Punjab with restoration time taken by the utility during an outage of the categories mentioned in the Table 3.4 such as load shedding considering both weekly off days and peak load categories and long notice period or safe advance warning planned power outages. Further, it has been observed from the analysis that Central Punjab was quite satisfied with the restoration time taken by the utility in an event of an outage of the type "dangerous advance warning or short notice period planned power outages than the other two groups. For the variable, considering the "unplanned outages, North and South Punjab have ranked lower than the Central Punjab, depicting that northern and southern regions were dissatisfied towards the restoration time in an event of unplanned outages. This section is fairly linked with the performance of the utility staff based on their quickness to respond and restore the power considering the different type of outages.

Eli Unplanned power outages E2i Dangerous advance warning planned power outages E3i Safe advance warning planned power outages E4i Long length load shedding	Location Central Punjab North Punjab South Punjab South Punjab Central Punjab P 0.000 H= 72.4 Central Punjab South Punjab P 0.000 H= 117 Central Punjab South Punjab South Punjab P 0.000 H= 15.9 Central Punjab Central Punjab Central Punjab Central Punjab Central Punjab	5 2 2.5 .580 , df= 6 5 5	106.49 31.96 33.42		1-2 2-3 3-1	Test Statistics 54.511 6.638 61.149 438 (0.000 74.532 -1.454	Standard Error 7.777 10.452 9.369 0), η2= 0.35 7.901	unn's Post Test Std. Statistcs 7.010 0.635 6.526 U(3-1)= 1 9.434	p-value 0.000 0.525 0.000	Adjusted p-value 0.000 1.000 0.000 0.02=0.35
Eli Unplanned power outages E2i Dangerous advance warning planned power outages E3i Safe advance warning planned power outages E4i Long length load shedding	1 Central Punjab 2 North Punjab 3 South Punjab 9 = 0.000 H= 72.4 1 Central Punjab 2 North Punjab 2 North Punjab 3 South Punjab 3 South Punjab 3 South Punjab 9 = 0.000 H= 15.5 1 Central Punjab 2 North Punjab	3 2 224, df= 2 5 2 2.5 5.580, df= 6 5 5	Rank 99.15 44.64 38.00 $ \eta 2(H) = 0$ 106.49 31.96 33.42 $2 \eta 2(H) = 0$ 85.20	Rank 	Pairs 1-2 2-3 3-1 U(1-2)= 1-2 2-3 3-1	Statistics 54.511 6.638 61.149 438 (0.000 74.532 -1.454	$\frac{\text{Error}}{7.777}$ 10.452 9.369 0), $\eta^2 = 0.35$ 7.901	Statistcs 7.010 0.635 6.526 U(3-1)=1	0.000 0.525 0.000	p-value 0.000 1.000 0.000
Eli Unplanned power outages E2i Dangerous advance warning planned power outages E3i Safe advance warning planned power outages E4i Long length load shedding	2 North Punjab 3 South Punjab 9 = 0.000 H= 72.4 1 Central Punjab 2 North Punjab 3 South Punjab 2 North Punjab 3 South Punjab 3 South Punjab 9 = 0.000 H= 15.5 1 Central Punjab 2 North Punjab	2 2 424, df= 2 5 2 2.5 580, df= 6 5 5	99.15 44.64 38.00 $ \eta 2(H) = 0$ 106.49 31.96 33.42 $2 \eta 2(H) =$ 85.20).49	1-2 2-3 3-1 U(1-2)= 1-2 2-3 3-1	54.511 6.638 61.149 438 (0.000 74.532 -1.454	7.777 10.452 9.369 0), $\eta^2 = 0.35$ 7.901	7.010 0.635 6.526 U(3-1)= 1	0.525 0.000	0.000 1.000 0.000
Eli Unplanned power outages E2i Dangerous advance warning planned power outages E3i Safe advance warning planned power outages E4i Long length load shedding	2 North Punjab 3 South Punjab 9 = 0.000 H= 72.4 1 Central Punjab 2 North Punjab 3 South Punjab 2 North Punjab 3 South Punjab 3 South Punjab 9 = 0.000 H= 15.5 1 Central Punjab 2 North Punjab	2 2 424, df= 2 5 2 2.5 580, df= 6 5 5	$44.64 \\ 38.00 \\ \eta 2(H) = 0 \\ 106.49 \\ 31.96 \\ 33.42 \\ 2 \eta 2(H) = 85.20 \\ 85.20 \\ 100$		2-3 3-1 U(1-2)= 1-2 2-3 3-1	6.638 61.149 438 (0.000 74.532 -1.454	10.452 9.369 0), η2= 0.35 7.901	0.635 6.526 U(3-1)= 1	0.525 0.000	1.000 0.000
power outages 1 E2i Dangerous 1 advance warning 1 planned power 1 goutages 1 E3i Safe advance 1 warning planned 1 power outages 1 E4i Long length 1 load shedding 1	3 South Punjab p= 0.000 H= 72.4 1 Central Punjab 2 North Punjab 3 South Punjab p= 0.000 H= 117 1 Central Punjab 3 South Punjab 9 South Punjab p= 0.000 H= 15.5 1 Central Punjab 2 North Punjab	2 124, df= 2 5 2 2.5 .580, df= 6 5 5	$38.00 \\ \eta^2(H) = 0 \\ 106.49 \\ 31.96 \\ 33.42 \\ 2 \eta^2(H) = \\ 85.20 \\ $		3-1 U(1-2)= 1-2 2-3 3-1	61.149 438 (0.000 74.532 -1.454	9.369 0), $\eta 2=0.35$ 7.901	6.526 U(3-1)= 1	0.000	0.000
E2i Dangerous advance warning planned power outages E3i Safe advance warning planned power outages E4i Long length load shedding	p= 0.000 H= 72.4 1 Central Punjab 2 North Punjab 3 South Punjab 9 D.000 H= 117 1 Central Punjab 2 North Punjab 9 South Punjab 1 Central Punjab 2 North Punjab	24, df= 2 5 2.5 .580 , df= 6 5 5	$ \eta^{2}(H) = 0$ 106.49 31.96 33.42 $2 \eta^{2}(H) =$ 85.20		U(1-2)= 1-2 2-3 3-1	438 (0.000 74.532 -1.454)), $\eta 2 = 0.35$ 7.901	U(3-1)= 1		
E2i Dangerous advance warning planned power outages E3i Safe advance warning planned power outages E4i Long length load shedding	I Central Punjab 2 North Punjab 3 South Punjab 9 = 0.000 H= 117 1 Central Punjab 2 North Punjab 3 South Punjab p= 0.000 H= 15.9 1 Central Punjab 2 North Punjab	5 2 2.5 .580 , df= 6 5 5	$ \begin{array}{r} 106.49 \\ 31.96 \\ 33.42 \\ 2 \mid \eta 2(H) = \\ 85.20 \\ \end{array} $		1-2 2-3 3-1	74.532 -1.454	7.901		79 (0.000)	$\eta 2 = 0.35$
E2i Dangerous advance warning planned power outages E3i Safe advance warning planned power outages E4i Long length load shedding	I Central Punjab 2 North Punjab 3 South Punjab 9 = 0.000 H= 117 1 Central Punjab 2 North Punjab 3 South Punjab p= 0.000 H= 15.9 1 Central Punjab 2 North Punjab	5 2 2.5 .580 , df= 6 5 5	$ \begin{array}{r} 106.49 \\ 31.96 \\ 33.42 \\ 2 \mid \eta 2(H) = \\ 85.20 \\ \end{array} $		2-3 3-1	-1.454		0.424		
advance warning planned power outages E3i Safe advance warning planned power outages E4i Long length load shedding	2 North Punjab 3 South Punjab p= 0.000 H= 117 1 Central Punjab 2 North Punjab 3 South Punjab p= 0.000 H= 15.9 1 Central Punjab 2 North Punjab	2 2.5 .580, df= 6 5 5	31.96 33.42 2 η2(H) = 85.20	= 0.80	2-3 3-1	-1.454			0.000	0.000
planned power outages E3i Safe advance warning planned power outages E4i Long length load shedding	3 South Punjab p= 0.000 H= 117 1 Central Punjab 2 North Punjab 3 South Punjab p= 0.000 H= 15.5 1 Central Punjab 2 North Punjab	2.5 .580 , df= 6 5 5	33.42 2 η2(H) = 85.20	= 0.80	3-1		10.619	-0.137	0.891	1.000
outages E3i Safe advance warning planned power outages E4i Long length load shedding	p= 0.000 H= 117 Central Punjab North Punjab South Punjab p= 0.000 H= 15.9 Central Punjab North Punjab	.580 , df= 6 5 5	2 η2(H) = 85.20	= 0.80						
E3i Safe advance warning planned power outages	Central Punjab North Punjab South Punjab p= 0.000 H= 15.9 Central Punjab North Punjab	6 5 5	85.20	= 0.80		73.077	9.519	7.677	0.000	0.000
E3i Safe advance warning planned power outages	2 North Punjab 3 South Punjab p= 0.000 H= 15.5 1 Central Punjab 2 North Punjab	5 5						U(3-1)=0.		
warning planned power outages	3 South Punjab p= 0.000 H= 15.9 l Central Punjab 2 North Punjab	5	60.23		1-2	24.977	7.174	3.482	0.000	0.001
Power outages	p= 0.000 H= 15.9 l Central Punjab 2 North Punjab				2-3	-0.608	9.642	-0.063	0.950	1.000
E4i Long length	l Central Punjab 2 North Punjab	060, df= 2	60.83		3-1	24.369	8.643	2.819	0.005	0.014
E4i Long length load shedding	l Central Punjab 2 North Punjab		$ \eta^{2}(H) = 0$	0.10	U(1-2)=	1113 (0.00	0), η2=0.07	U(3-1)=6	76 (0.004)	, η2=0.06
E4i Long length 2 load shedding 3	2 North Punjab	6	77.20							
load shedding		6	68.95							
1								erformed be differences		
	3 South Punjab	6	74.31			ides not sho	w significant	differences	across samp	pies.
	$p = 0.377 \mid H = 1$.953, df=	$2 \mid \eta 2(H)$	= 0.00						_
E5i Short length	l Central Punjab	6	98.43		1-2	53.816	7.511	7.165	0.000	0.000
	2 North Punjab	5	44.61		2-3	4.050	10.096	0.401	0.688	1.000
load shedding	3 South Punjab	5	40.56		3-1	57.866	9.050	6.394	0.000	0.000
	p=0.000 H= 72.9).49				U(3-1)= 2		
									· · · ·	
Table 3.5. Level of	of Frequency c	of Occur	rence of	the Diff	erent (Lategory	of Outag	ges Basec	l on thei	r Length
			K-W	Visual		H	Bonferroni I	Dunn's Post	Hoc	
Dependent Variable	s Location	Media		Mean	Group		Standard	Test Std.	a surbur	Adjusted
			Rank	Rank	Pairs	Statistic		Statistcs	p-value	p-value
F1ii Dangerous	1 Central Punja	ь з	42.58		1-2	-73.442		-9.338	0.000	0.000
Advance Warning,	2 North Punjab	5	116.03		2-3	-0.975	10.570	-0.092	0.927	1.000
Short length Outage (DAW, SLO)			117.00		3-1	-74.417	9.475	-7.854	0.000	0.000
(DA W, 3LO)	p= 0.000 H= 1) = 0.80				U(3-1)= 3 (0	-	
F2ii Dangerous	1 Central Punja		44.22		1-2	-70.030		-8.914	0.000	0.000
Advance Warning, Medium length	2 North Punjab	6	114.25		2-3	-70.009	10.559 9.466	0.002 -7.396	0.998	0.000
Outage (DAW, MLC	3 South Punjab p= 0.000 H= 1							-7.396 58 U(3-1)=		
	1 Central Punja		51.39	- 0.72	1-2	-53.101	7.565	-7.020	0.000	0.000
F3ii Dangerous Advance Warning,	2 North Punjab	4	104.49		2-3	-0.929	10.167	-0.091	0.927	1.000
Long length Outage	3 South Punjab		105.42		3-1	-54.030		-5.928	0.000	0.000
(DAW, LLO)	p=0.000 H=6				U(1-2		0), η2= 0.34		75.5 (0.000	
F4ii Safe Advance	1 Central Punja		48.49		1-2	-59.724	7.775	-7.682	0.000	0.000
Warning, Short	2 North Punjab	4	108.21		2-3	-1.142	10.449	-0.109	0.913	1.000
length Outage (SAW	7, 3 South Punjab	4	109.35		3-1	-60.866	9.367	-6.498	0.000	0.000
SLO)	p=0.000 H= 8	0.258 , df	= 2 η2(H)	= 0.54	U(1-2)= 307 (0.00	0), $\eta 2 = 0.43$	U(3-1)= 1	96 (0.000),	$\eta 2 = 0.33$
F5ii Safe Advance	1 Central Punja		44.88		1-2	-71.107		-8.885	0.000	0.000
Warning, Medium	2 North Punjab	6	115.99		2-3	6.967	10.756	0.648	0.517	1.000
length Outage (SAW MLO)	5		109.02		3-1	-64.140		-6.652	0.000	0.000
WILC)	p= 0.000 H= 9			= 0.67	U(1-2			7 U(3-1)= 9		η2= 0.43
F6ii Safe Advance	1 Central Punja 2 North Punjab	b 2 3	49.55		1-2 2-3	-60.421 7.287	7.618	-7.932 0.712	0.000	0.000
Warning, Long lengt	a South Duniah		109.98		3-1	-53.134		-5.789	0.000	0.000
Outage (SAW, LLO)	p= 0.000 H= 7				_)= 303 (0.00		-3.789		
F7ii Long Advance	1 Central Punja		54.85	5.52	1-2	-51.355		-6.868	0.000	0.000
Warning, Long Load		5	106.20		2-3	15.742	10.049	1.566	0.117	0.352
Shedding-Week off	3 South Punjab	5	90.46		3-1	-35.613		-3.953	0.000	0.000
days (LAW,LLS)	p= 0.000 H= 5			= 0.34	U(1-2			U(3-1)= 5		
F8ii Long Advance	1 Central Punja		61.58		1-2	-30.248	7.126	-4.245	0.000	0.000
Warning, Short Load		5	91.83		2-3	0.971	9.577	0.101	0.919	1.000
Shedding-Peak Load		5	90.85		3-1	-29.277	8.585	-3.410	0.001	0.002
(LAW, SLS)	p=0.000 H=2			= 0.15			.000), η2=0.		599 (0.000	
F9ii No Advance	1 Central Punja		51.30		1-2	-55.971	7.454	-7.509	0.000	0.000
Warning, Short	2 North Punjab	4	107.28		2-3	6.213	10.018	0.620	0.535	1.000
Length Outage (NAW, SLO)	3 South Punjab		101.06		3-1	-49.759		-5.541	0.000	0.000
	p= 0.000 H= 6			= 0.47		-		7 U(3-1)=	1	1
F10ii No Advance	1 Central Punja 2 North Punjab		56.38		1-2	-48.619		-6.723	0.000	0.000
Warning, Medium Length Outage	2 North Punjab 3 South Punjab	6 5	105.00		2-3	-30.702	9.720 8.713	1.843 -3.524	0.065	0.196
(NAW, MLO)	p= 0.000 H= 4			= 0.32		-30.702		-		$\eta 2 = 0.10$
	1 Central Punja		61.15	0.34	1-2	-32.858		-4.684	0.000	$\eta_2 = 0.10 + 0.000$
TILLEN A	2 North Punjab	4	94.01		2-3	5.325	9.427	0.565	0.572	1.000
F11ii No Advance Warning Long										
F11ii No Advance Warning, Long Length Outage	3 South Punjab		88.69		3-1	-27.533		-3.258	0.001	0.003

Table 3.4. Level of satisfaction towards the restoration time taken by the utility during the different outage types

Further, statistical analysis of the dependent variables (F1ii-F11ii) linked with the "level of frequency of occurrence of the different category of outages based on their length" is shown in the Table 3.5. A Kruskal-Wallis test was applied on the dependent variables from F1ii to F11ii to examine if there were differences in level of frequency of occurrence scores between groups that differed in their geographical region: the "Central Punjab" (n = 84), "North Punjab" (n = 40) and "South Punjab" (n = 24) geographical region level groups. A score was statistically significantly different between the different levels of geographical region group based on the test statistics "H (Degree of Freedom) or x2 (Degree of Freedom)" with p-value of 0.000 for all the variables. The H or x2 test statistics values for the variables F1ii, F2ii, F3ii, F4ii, F5ii, F6ii, F7ii, F8ii, F9ii, F10ii and F11ii are 118.079, 106.488, 66.932, 80.258, 98.617, 77.383, 51.951, 23.588, 69.813, 48.401 and 26.269, respectively. Next, H-statistics values were used to calculate the effect sizes (n_{H}^{2}) for all the significant variables using the online effect size calculator. The effect sizes for the variables F1ii, F2ii, F3ii, F4ii, F5ii, F6ii, F7ii, F8ii, F9ii, F10ii and F11ii were calculated and found in the zone of large effect with values 0.801, 0.721, 0.448, 0.540, 0.666, 0.520, 0.344, 0.149, 0.468, 0.320 and 0.167, respectively. Then, pairwise comparisons were made using Dunn's (1964) procedure. A Bonferroni correction for multiple comparisons was applied with the statistical significance accepted at the p < 0.0167 level. This post hoc analysis uncovered statistically significant differences in the level of satisfaction scores between Central Punjab and North Punjab for all the significant variables with p-values equal to 0.000. Likewise, pairwise comparisons of Central Punjab and South Punjab for all the significant variables have shown statistically significant differences with p-values of 0.000 except for the variables F8ii, F10ii and F11ii with p-values of 0.002, 0.001 and 0.003, respectively. Statistically, no significant differences were seen between the North Punjab and South Punjab for any of the dependent variables. For all the variables, mean rank was found lower for the Central Punjab than North Punjab and South Punjab which is evident from the Table 3.5.

After cautiously spotting the median and crosstab calculations results showing the percentage distribution of the sample specified that both the groups North and South Punjab were replied nearly identical with higher ranks on seven-point scale than the Central Punjab. This showed that the textile firms from Central Punjab were considerably less affected by the power outages described by their types i.e. dangerous advance warning (short advance notification), safe advance warning (long advance notification), no advance warning (no advance notification) and long advance notification load shedding, and lengths with up to half an hour (short length outages), greater than half an hour to four hours (medium length outages) and greater than four hours outage (long length outages), than the North and South Punjab as mentioned in the Table 3.5. It has also been investigated that the vastly affected North and South Punjab region marked very high rank towards "No Advance Warning, Medium Length Outage (NAW, MLO)", Dangerous Advance Warning, Medium-length Outage (DAW, MLO) and Safe Advance Warning, Medium-length Outage (SAW, MLO), which indicated that the outages of the length greater than half an hour to four hours, were occurred maximum during the concerned period from 2010 to 2014. However, the occurrence of the outages of the type "Safe Advance Warning, Long length Outage (SAW, LLO)" were found minimum among all the categories.

			I	able	3.0.	CONT	nger	icy i	able for the	e Deb	bende	ent v	allan	ies u	naer	Part	В.		
Dependent Variables	Independent Variable	Not at all concerned (1)	Slightly concerned (2)	Somewhat concerned (3)	Moderately concerned (4)	Considerably concerned (5)	Highly concerned (6)	Extremely concerned (7)	Sample Percentage Distribution- Data Visulization	Dependent Variables	Independent Variable	Not at all concerned (1)	Slightly concerned (2)	Somewhat concerned (3)	Moderately concerned (4)	Considerably concerned (5)	Highly concerned (6)	Extremely concerned (7)	Sample Percentage Distribution- Data Visulization
	СР	12%	44%	36%	8%	0%	0%	0%			СР	0%	7%	35%	33%	20%	5%	0%	
B1	NP	0%	8%	23%	18%	40%	10%	3%		B6	NP	0%	0%	0%	10%	65%	18%	8%	_
ы	SP	0%	8%	42%	8%	29%	8%	4%		БО	SP	0%	0%	4%	25%	42%	25%	4%	
	Total	7%	28%	33%	11%	16%	4%	1%			Total	0%	4%	20%	26%	36%	11%	3%	
	СР	24%	50%	25%	1%	0%	0%	0%			СР	0%	0%	0%	1%	23%	54%	23%	_ • • •
B2	NP	8%	40%	48%	5%	0%	0%	0%		B7	NP	0%	0%	0%	0%	15%	38%	48%	- 1
	SP	13%	38%	38%	13%	0%	0%	0%			SP	0%	0%	0%	0%	17%	58%	25%	
	Total	18%	45%	33%	4%	0%	0%	0%			Total	0%	0%	0%	1%	20%	50%	30%	
	СР	25%	32%	39%	4%	0%	0%	0%			СР	0%	0%	0%	4%	18%	51%	27%	_∎.∎
В3	NP	0%	10%	63%	25%	3%	0%	0%		B8	NP	0%	0%	0%	0%	5%	28%	68%	_ = _
	SP	8%	0%	46%	46%	0%	0%	0%			SP	0%	0%	0%	0%	8%	33%	58%	- 2
	Total	16%	21%	47%	16%	1%	0%	0%			Total	0%	0%	0%	2%	13%	42%	43%	
	СР	0%	5%	35%	43%	18%	0%	0%			СР	0%	17%	39%	35%	7%	2%	0%	
В4	NP	0%	0%	0%	20%	45%	33%	3%		B9	NP	0%	0%	3%	23%	38%	35%	3%	_
	SP	0%	0%	4%	21%	46%	25%	4%			SP	0%	0%	0%	25%	46%	25%	4%	
	Total	0%	3%	20%	33%	30%	13%	1%			Total	0%	9%	23%	30%	22%	15%	1%	╺▋▕▋▖▁
	СР	0%	0%	18%	27%	45%	10%	0%				•	Ludhia	-					
В5	NP	0%	0%	0%	3%	30%	45%	23%					mritsa			r)			
	SP	0%	0%	0%	8%	46%	46%	0%		SP- So	uth Pu	njab (P	atiala a	nd Mol	hali)				
	Total	0%	0%	10%	18%	41%	25%	6%									<u> </u>		

Table 3.6. Contingency Table for the Dependent Variables under Part B.

Table 3.7. Contingency Table for the Dependent Variables under Part D, Ei and Fii.

s It	e at	_		(3)	(4)	(2)	(9)	e	Sample	11 s	ti a	_A €	(2)	at (3)	æ	at 5)	fied	ЪĒ	Sample
Dependent Variables	Independent Variable	Never (1)	Rarely (2)	Ocassionally (3)	Sometimes (4)	Frequently (5)	Usually ((Everytime (7)	Percentage Distribution- Data Visulization	Dependent Variables	Independent Variable	Completely dissatisfied (1)	Mostly dissatisfied (2)	Somewhat dissatisfied (3)	Neutral (4)	Somewhat satisfied (5)	Mostly satisfied (6)	Completely satisfied (7)	Percentage Distribution- Data Visulization
	CP	0%	0%	2%	65%	31%	1%	0%			CP	0%	13%	43%	5%	35%	5%	0%	
	NP	0%	0%	0%	0%	25%	68%	8%		-	NP	8%	68%	25%	0%	0%	0%	0%	_
D1	SP	0%	0%	0%	0%	33%	50%	17%		E1i	SP	0%	92%	8%	0%	0%	0%	0%	_
	Total	0%	0%	1%	37%	30%	27%	5%			Total	2%	41%	32%	3%	20%	3%	0%	
	CP	0%	23%	73%	5%	0%	0%	0%			CP	0%	0%	0%	1%	67%	32%	0%	
D2	NP	0%	0%	70%	30%	0%	0%	0%		E1ii	NP	0%	53%	48%	0%	0%	0%	0%	
D2	SP	0%	0%	79%	21%	0%	0%	0%		EIII	SP	0%	50%	46%	4%	0%	0%	0%	
	Total	0%	13%	73%	14%	0%	0%	0%			Total	0%	22%	20%	1%	38%	18%	0%	
	CP	0%	0%	4%	32%	62%	2%	0%			CP	0%	0%	0%	1%	32%	65%	1%	_ =
D3	NP	0%	0%	0%	0%	8%	88%	5%		E1iii	NP	0%	0%	0%	0%	68%	33%	0%	
25	SP	0%	0%	0%	0%	13%	83%	4%			SP	0%	0%	0%	0%	67%	33%	0%	
	Total	0%	0%	2%	18%	39%	39%	2%			Total	0%	0%	0%	1%	47%	51%	1%	
	CP	0%	4%	32%	61%	4%	0%	0%	_ = _		CP	0%	0%	0%	0%	13%	82%	5%	
D4	NP	0%	0%	0%	0%	65%	35%	0%		Eliv	NP	0%	0%	0%	0%	25%	70%	5%	
	SP	0%	0%	0%	8%	67%	21%	4%			SP	0%	0%	0%	0%	17%	79%	4%	
	Total	0%	2%	18%	36%	30%	13%	1%			Total	0%	0%	0%	0%	17%	78%	5%	
	CP	0%	0%	0%	18%	70%	12%	0%			CP	0%	0%	0%	0%	12%	67%	21%	
D5	NP	0%	0%	0%	0%	30%	65%	5%	-	Elv	NP	0%	0%	0%	3%	78%	20%	0%	
	SP	0%	0%	0%	0%	38%	63%	0%			SP	0%	0%	0%	0%	88%	13%	0%	_
	Total	0%	0%	0%	10%	54%	34%	1%			Total	0%	0%	0%	1%	42%	45%	12%	
les ent	lent ole	Ξ	(2)	Ocassionally (3)	s (4)	y (5)	(9)	(<u>1</u>) =	Sample Percentage	les l	lent ble	Ξ	0	Ocassionally (3)	Sometimes (4)	y (5)	(9)	(<u>)</u>	Sample Percentage
Dependent Variables	Independent Variable	Never (1)	Rarely (siona	Sometimes (Frequently (Usually (Everytime (Distribution- Data	Dependent Variables	Independent Variable	Never (1)	Rarely (2)	siona	letime	Frequently (Usually (Everytime (7)	Distribution- Data
a -	Ind	N	R	Ocas	Son	Free	ñ	Eve	Visulization	a -	Ind	N	~	0cas	Son	Free	ñ	Eve	Visulization
	CP	32%	65%	2%	0%	0%	0%	0%			CP	0%	0%	51%	48%	1%	0%	0%	
F1ii	NP	0%	0%	0%	10%	75%	15%	0%		F7ii	NP	0%	0%	0%	0%	60%	35%	5%	
FIL	SP	0%	0%	0%	13%	67%	21%	0%		F/II	SP	0%	0%	0%	17%	54%	25%	4%	
	Total	0%	18%	37%	6%	31%	7%	0%			Total	0%	0%	0%	32%	52%	14%	2%	
	CP	0%	23%	68%	10%	0%	0%	0%	_		CP	0%	0%	49%	51%	0%	0%	0%	
F2ii	NP	0%	0%	0%	3%	40%	58%	0%	_	F8ii	NP	0%	0%	0%	18%	65%	18%	0%	
1.211	SP	0%	0%	0%	0%	46%	54%	0%		1.01	SP	0%	0%	0%	13%	79%	8%	0%	
	Total	0%	0%	13%	39%	24%	24%	0%	_ ==		Total	0%	0%	0%	34%	59%	6%	0%	
	CP	30%	63%	7%	0%	0%	0%	0%	-		CP	0%	63%	37%	0%	0%	0%	0%	
F3ii	NP	0%	0%	30%	68%	3%	0%	0%	-	F9ii	NP	0%	0%	0%	68%	33%	0%	0%	
1.5.1	SP	0%	0%	29%	67%	4%	0%	0%	-		SP	0%	0%	4%	71%	25%	0%	0%	
	Total	0%	17%	49%	33%	1%	0%	0%			Total	0%	0%	36%	51%	13%	0%	0%	
	CP	33%	62%	5%	0%	0%	0%	0%			CP	0%	0%	19%	71%	10%	0%	0%	
F4ii	NP	0%	0%	23%	58%	20%	0%	0%		F10ii	NP	0%	0%	0%	0%	33%	63%	5%	
	SP	0%	0%	25%	46%	29%	0%	0%			SP	0%	0%	0%	0%	58%	42%	0%	
	Total	2%	18%	44%	26%	10%	0%	0%			Total	0%	0%	0%	11%	59%	29%	1%	
	CP	25%	51%	24%	0%	0%	0%	0%			CP	0%	56%	44%	0%	0%	0%	0%	
F5ii	NP	0%	0%	0%	28%	20%	53%	0%		F11ii	NP	0%	0%	13%	85%	3%	0%	0%	
1.21	SP	0%	0%	0%	38%	29%	33%	0%			SP	0%	0%	21%	75%	4%	0%	0%	
	Total	0%	14%	29%	27%	10%	20%	0%			Total	0%	0%	39%	60%	1%	0%	0%	
1	CP	74%	26%	0%	0%	0%	0%	0%			ely, in le			the chan					
F6ii	NP	0%	3%	60%	38%	0%	0%	0%						of the cl the cha				e.	
1.01	SP	0%	13%	54%	29%	4%	0%	0%		5 - Free	quently,	in about	70% of	the cha	nces wh	en I cou			
	Total	2%	43%	39%	15%	1%	0%	0%		7 - Eve	ry time.		-						
+ha					rall n			a dict	ribution							م ما ۲		none	It is a second

Further, the group wise and overall percentage distribution of the samples are shown in the corresponding contingency tables Table 3.6 and Table 3.7 for all the dependent variables under the parts B, D, Ei and Fii, respectively. The category which got the higher responses are marked black as compared to the other categories which are marked in grey colour. The visualization of the data is clearly depicting the orientation of the textile consumers of Punjab.

Finally, for the parts B, D, Ei and Fii, a related sample Friedman's test was applied to determine whether there are any statistically significant differences between the distributions of the related groups (dependent variables). Also, a Kendal's W, which is considered as the normalization of the statistic of the Friedman test, was applied for assessing the agreement among the raters (textile firms of Punjab). Kendall's W ranges from 0 (no agreement) to 1 (complete agreement). The results of both Friedman's Q and Kendal's W test statistics were statistically significantly different as shown in the Table 3.8. The high values of Kendal's W revealed that degree of unanimity among the various responses were fairly good which means that each respondent has allocated nearly the similar order to the variables.

	lable 3.8. Lest	. Statistics for the parts B	, D, EI & FII	
Test Statistics	Part B	Part D	Part Ei	Part Fii
Ν	148	148	148	148
Friedman's Q or Chi-Square	925.374	424.587	403.095	967.169
Kendall's W	0.782	0.717	0.681	0.653
df	8	4	4	10
Asymp. Sig.	0.000	0.000	0.000	0.000

Table 3.9 mentioned below shows the descriptive statistics for the dependent variables under the parts B, D, Ei and Fii. The variables are arranged in a descending order based on their mean ranks. The abbreviations DAW, SAW, NAW and LAW stands for dangerous advance warning (short notice advance warning), safe advance warning (long notice warning), no advance warning and long advance warning, respectively. The terms SLO, MLO and LLO stands for short length outages (up to half an hour duration), medium length outages (greater than half an hour but less than four hours) and long length outages (greater than four hours), respectively. Further, LLS and SLS stands for long length load shedding and short length

Table 3.8. Test Statistics for the parts B, D, Ei & Fii

load shedding, respectively. DAW, PPO stands for dangerous advance warning, planned power outages and SAW, PPO-Safe advance warning, planned power outages The sequence of the variables under part B indicated that the unplanned outages, supply deficit (cause of load shedding) and relaying problems were the three major power reliability issues towards which the textile firms of Punjab were highly concerned. Also, it appeared that the textile firms were not much concerned about the power quality issues. The outcomes of the part D revealed that the major causes of the outages were the failure of fuses, electric equipment (transformers) and overhead lines. Moreover, the part Ei uncovered that the textile firms were largely dissatisfied towards the restoration time taken by the utility in an event of unplanned outages and DAW, PPO- dangerous advance warning planned power outages. Finally, the part F exposed that the occurrence of NAW, MLOno advance warning, medium length outages were found noticeably high followed by LAW, LLS- long advance warning, long length load shedding (weekly off days) and LAW, SLS- long advance warning, short length load shedding (peak load restriction hours per day). It has been observed that the outages of the medium length (greater than half an hour to less than four hours) were occurred higher for every type of the outages under consideration. A test statistics of Dunn's Bonferroni post hoc test for the parts B, D and Ei, and Fii are shown in the Table 3.10 and Table 3.11, respectively. The rows of the table which are showing insignificant pairwise comparisons are marked grey.

·	Table	= 5.2.	DESC	iipuve .	tatis		ה נוו <i>ב</i> ש	ependent vari		errar	LS D, L	<i>)</i> , LI а	nu i ii			1
Dependent Variables	Mean	Visual Mean		Percentiles		Mear	Std. Dev.	Dependent V	ariables	Mean	Visua Mean		Percentiles		Mear	Std. Dev.
Dependent variables	Rank	Rank	25th	50th (Median)	75th	Mean	Sta. Dev.	Dependent V	anabies	Rank	Rank		50th (Median)	75th	Mean	sta. Dev.
F10ii- NAW, MLO	9.81		5.00	5.00	6.00	5.21	0.64	B8- Unplanned out	ages	8.28		6.00	6.00	7.00	6.26	0.76
F7ii- LAW, LLS	8.91		4.00	5.00	5.00	4.86	0.73	B7- Supply deficit		7.96		6.00	6.00	7.00	6.09	0.72
F8ii- LAW, SLS	8.40		4.00	5.00	5.00	4.72	0.57	B5- Relaying probl	ems	6.46		4.00	5.00	6.00	4.99	1.04
F2ii- DAW, MLO	8.23		4.00	4.00	5.00	4.59	1.00	B6- Transmission of	overloading	5.27		4.00	4.50	5.00	4.39	1.13
F5ii- SAW, MLO	5.93		3.00	4.00	5.00	3.92	1.32	B4- Switching error	rs	5.20		4.00	4.00	5.00	4.34	1.07
F9ii- NAW, SLO	5.43		3.00	4.00	4.00	3.76	0.66	B9- Planned outage	es	4.79		3.00	4.00	5.00	4.14	1.24
F1ii- DAW, SLO	5.29		3.00	3.00	5.00	3.72	1.28	B1- Voltage fluctua	tions	2.99		2.00	3.00	4.00	3.18	1.36
F11ii- NAW, LLO	4.93		3.00	4.00	4.00	3.63	0.51	B3- Transient fault	s	2.25		2.00	3.00	3.00	2.66	0.95
F4ii- SAW, SLO	3.59		3.00	3.00	4.00	3.24	0.94	B2- Frequency fluc	tuations	1.81		2.00	2.00	3.00	2.24	0.79
F3ii- DAW, LLO	3.41		3.00	3.00	4.00	3.19	0.72			nce warr	ce warning, planned power ou					1
F6ii- SAW, LLO	2.07		2.00	3.00	3.00	2.69	0.77	** SAW, PPO- Saf						ges		
								-								
Dependent Variables	Mean	Visual Mean		Percentiles		Mean	Std. Dev.	Dependent V	ariables	Mean	Visua Mean		Percentiles		Mean	Std. Dev.
Dependent variables	Rank	Rank	25th	50th	75th	wream	Biu. Dev.	Dependent	anaoles	Rank	Rank		50th	75th	wieam	Bid. Dev.
D5- Fuses	3.98		5.00	(Median) 5.00	6.00	5.27	0.66	E4i Long longth lo	ad abadding	4.11		6.00	(Median) 6.00	6.00	5.88	0.45
	-		5.00	5.00	6.00	5.20	0.83	E4i- Long length lo	-			5.00				0.43
D3- Equipment	3.95		_		6.00	4.97	0.85	E5i- Short length lo	au sneuding	3.85			6.00	6.00	5.69	
D1- Overhead lines	3.51		4.00	5.00				E3i- SAW, PPO**		3.51		5.00	6.00	6.00	5.52	0.53
D4- Switchgears	2.47		4.00	4.00	5.00	4.36	1.01	E2i- DAW, PPO*		2.18		3.00	5.00	5.00	4.09	1.49
D2- Underground cable	s 1.09		3.00	3.00	3.00	3.01	0.52	Eli Unplanned pov		1.35		2.00	3.00	3.75	3.05	1.24
		Table	23.10		tatis	tics of	Dunn's	Bonferroni Po	ist Hoc foi	Parts	B, D a	and E	i			_
Sample 1-	Test		td.	Std. Test		Sig.	Adj.		Test	Std.		Std. Test	Sig.		Adj.	
Sample 2	Statisti	e Er	ror	Statisti	с	Sig.	Sig."	Sample 2	Statistic	Erro	r St	tatisti			Sig. ^a	
B2-B3	-0.439	-	318	-1.380	_	0.168	1.00		-3.476	0.31		10.920		_	0.000	
B2-B1 B2-B9	1.179 -2.980	-	318 318	3.704 -9.360	_	0.000 0.000	0.00		-4.976 -5.291	0.31		15.63 16.61	-		0.000	
B2-B4	-3.389	_	318	-10.64	_	0.000.0	0.00		0.409	0.31		1.284	0.19		1.000	
B2-B6	-3.466	_	318	-10.88	_	0.000	0.00		0.486		0.318 1.5		1.528 0.12		1.000	
B2-B5 B2-B7	-4.655	_	318 318	-14.62 -19.33		0.000	0.00		1.676 3.176	0.31		5.264 9.975			0.000	
B2-B7 B2-B8	-6.470	-	318	-20.32	_	0.000	0.00		3.490	0.31		10.962	-		0.000	
B3-B1	0.740	0.	318	2.324		0.020	0.72	5 B4-B6	-0.078	0.31	8 -	-0.244	0.80	17	1.000	>
B3-B9	-2.541	_	318	-7.980	_	0.000	0.00		-1.267	0.31		-3.979	_		0.002	
B3-B4 B3-B6	-2.949	_	318 318	-9.264 -9.508	_	0.000 0.000	0.00		-2.767 -3.081	0.31		-8.691 -9.678	_		0.000	
B3-B5	-4.216		318	-13.24	_	0.000	0.00		1.189	0.31		3.735	0.00		0.007	
B3-B7	-5.716	-	318	-17.95	_	0.000	0.00		-2.689	0.31		-8.447	_		0.000	
B3-B8 B1-B9	-6.030 -1.801	_	318 318	-18.94	_	0.000	0.00		-3.003 -1.500	0.31		-9.434 -4.712	_	_	0.000	
B1-B2 B1-B4	-2.209	_	318	-6.940	_	0.000	0.00		-1.814	0.31		-5.699	_		0.000	
B1-B6	-2.287	0.	318	-7.184	F (0.000	0.00	0 B7-B 8	-0.314	0.31	8 -	-0.987	0.32	4	1.000	>
Sample 1-	Test	S	td.	Std.		<i></i>	Adj.	Sample 1-	Test	Std.		Std.			Adj.	
	Statisti		ror	Test Statisti	с	Sig.	Sig. ^a		Statistic	Erro	r	Test tatisti	e Sig.		Sig. ^a	
D2-D4	-1.378	O.	184	-7.499	, (0.000	0.00	0 E1i-E2i	-0.834	0.18	4 -	4.540	0.00	0	0.000)
D2-D1	2.422	_	184	13.179	_	0.000	0.00		-2.162	0.18		11.76	_		0.000	
D2-D3	-2.858	_	184	-15.55	_	0.000	0.00		-2.503	0.18		13.620 15.01			0.000	
D2-D5 D4-D1	-2.885	_	184 184	-15.69 5.680	_	0.000 0.000	0.00		-2.760 -1.328	0.18		-7.223				
D4-D3	1.480	_	184	8.051	_	0.000	0.00		-1.669	0.18		-9.080			0.000	
D4-D5	-1.507	_	184	-8.198	_	0.000	0.00		-1.926	0.18		10.47		_	0.000	
D1-D3 D1-D5	-0.436	_	184 184	-2.371	_	0.018 0.012	0.17		-0.341 -0.598	0.18		-1.856 -3.253			0.634	
D3-D5	-0.027	_	184	-0.147	_	0.883	1.00		0.257	0.18		1.397	0.16		1.000	_
		-														

Table 3.9. Descriptive Statistics for the Dependent Variables under Parts B, D, Ei and Fii

Sample1 Sample2	Test Statistic	Std. Error	Std. Test Statistic	Sig.	Adj. Sig.ª	Sample1 Sample2	Test Statistic	Std. Error	Std. Test Statistic	Sig.	Adj. Sig. ^a	
F6ii-F3ii	1.334	0.386	3.461	0.001	0.030	F11ii-F9ii	0.500	0.386	1.297	0.195	1.000	
F6ii-F4ii	1.517	0.386	3.934	0.000	0.005	F11ii-F5ii	1.003	0.386	2.602	0.009	0.509	
F6ii-F11ii	-2.851	0.386	-7.396	0.000	0.000	F11ii-F2ii	3.307	0.386	8.578	0.000	0.000	
F6ii-F1ii	3.216	0.386	8.342	0.000	0.000	F11ii-F8ii	3.476	0.386	9.017	0.000	0.000	
F6ii-F9ii	-3.351	0.386	-8.692	0.000	0.000	F11ii-F7ii	3.986	0.386	10.340	0.000	0.000	
F6ii-F5ii	3.855	0.386	9.998	0.000	0.000	F11ii-F10ii	4.882	0.386	12.662	0.000	0.000	
F6ii-F2ii	6.159	0.386	15.974	0.000	0.000	F1ii-F9ii	-0.135	0.386	-0.350	0.726	1.000	
F6ii-F8ii	-6.328	0.386	-16.412	0.000	0.000	F1ii-F5ii	-0.639	0.386	-1.656	0.098	1.000	
F6ii-F7ii	-6.838	0.386	-17.735	0.000	0.000	F1ii-F2ii	-2.943	0.386	-7.632	0.000	0.000	
F6ii-F10ii	-7.733	0.386	-20.057	0.000	0.000	F1ii-F8ii	-3.111	0.386	-8.070	0.000	0.000	
F3ii-F4ii	-0.182	0.386	-0.473	0.636	1.000	F1ii-F7ii	-3.622	0.386	-9.393	0.000	0.000	
F3ii-F11ii	-1.517	0.386	-3.934	0.000	0.005	F1ii-F10ii	-4.517	0.386	-11.715	0.000	0.000	
F3ii-F1ii	1.882	0.386	4.881	0.000	0.000	F9ii-F5ii	0.503	0.386	1.306	0.192	1.000	
F3ii-F9ii	-2.017	0.386	-5.231	0.000	0.000	F9ii-F2ii	2.807	0.386	7.282	0.000	0.000	
F3ii-F5ii	-2.520	0.386	-6.537	0.000	0.000	F9ii-F8ii	2.976	0.386	7.720	0.000	0.000	
F3ii-F2ii	4.824	0.386	12.513	0.000	0.000	F9ii-F7ii	3.486	0.386	9.043	0.000	0.000	
F3ii-F8ii	-4.993	0.386	-12.951	0.000	0.000	F9ii-F10ii	-4.382	0.386	-11.365	0.000	0.000	
F3ii-F7ii	-5.503	0.386	-14.274	0.000	0.000	F5ii-F2ii	2.304	0.386	5.976	0.000	0.000	
F3ii-F10ii	-6.399	0.386	-16.596	0.000	0.000	F5ii-F8ii	-2.473	0.386	-6.414	0.000	0.000	
F4ii-F11ii	-1.334	0.386	-3.461	0.001	0.030	F5ii-F7ii	-2.983	0.386	-7.737	0.000	0.000	
F4ii-F1ii	1.699	0.386	4.408	0.000	0.001	F5ii-F10ii	-3.878	0.386	-10.059	0.000	0.000	
F4ii-F9ii	-1.834	0.386	-4.758	0.000	0.000	F2ii-F8ii	-0.169	0.386	-0.438	0.661	1.000	
F4ii-F5ii	-2.338	0.386	-6.064	0.000	0.000	F2ii-F7ii	-0.679	0.386	-1.761	0.078	1.000	
F4ii-F2ii	4.642	0.386	12.040	0.000	0.000	F2ii-F10ii	-1.574	0.386	-4.083	0.000	0.002	
F4ii-F8ii	-4.811	0.386	-12.478	0.000	0.000	F8ii-F7ii	0.510	0.386	1.323	0.186	1.000	
F4ii-F7ii	-5.321	0.386	-13.801	0.000	0.000	F8ii-F10ii	-1.405	0.386	-3.645	0.000	0.015	
F4ii-F10ii	-6.216	0.386	-16.123	0.000	0.000	F7ii-F10ii	-0.895	0.386	-2.322	0.020	1.000	
F11ii-F1ii	0.365	0.386	0.946	0.344	1.000	Each row tests the null hypothesis that the Sample 1 and						
a. Significan correction f			adjusted by	the Bonf	erroni	Sample 2 dis (2-sided test			• •	-		

4. CONCLUSION

The power system reliability issues were found vastly dominant over the power quality issues. The results of the survey revealed that the districts, Amritsar and Jalandhar from Northern region, and districts Patiala and Mohali from the Southern region of Punjab faced the higher level of occurrence of different type and length of electric power outages, and had shown a high level of dissatisfaction towards the restoration time taken by the utility in the event of unplanned outages and dangerous or short period advance warning planned outages, than a district Ludhiana falling in the region of Central Punjab. Further, the higher rankings towards the causes of power outages related to the failure of utility infrastructure and equipment uncovered the deprived condition of the only available Punjab State Power Corporation Limited, a public utility company. Due to the non-availability of the accurate databases of the power outage events at the regional levels, these type of surveys are the need of hour to draw the attention of governments towards the different power system reliability issues so that the robust policies can be drafted in order to improve the reliability of power systems. The limitation of this demographic study was the spread of the sample around the distant areas of the Punjab which not only adds up to the cost but also consumed substantial time, however, if these type of surveys are supported by the funding of government, the results of these surveys will definitely help the regimes to make decisions on investment and improvement of power systems at each level of the utilities. This research can be extended to target the different types of firms and record their judgements towards the power system reliability and quality issues.

Acknowledgments

Author is extremely thankful to I.K Gujral, Punjab Technical University, Kapurthala (Punjab), India, for providing him the chance to perform this research work. Author expresses his sincere gratefulness to research supervisor Dr Harpuneet Singh (Assistant Professor, Department of Production Engineering), Guru Nanak Dev Engineering College, Ludhiana (Punjab), India, for his continuous supervision, valuable recommendations, persistent inspiration and tireless efforts throughout the duration of this research work. Also, the author expresses his heartiest thanks to micro and small-scale enterprises in Punjab for providing their valuable time and right information to facilitate the research to be completed in a righteous way.

References

[1] Diboma, B., & Tatietse, T. T.: Cost Estimates and Study of the Characteristics of the Discontinuity of Electricity Supply of Industries in Cameroon. Journal of Scientific Research & Reports, 2(1), 145-172, 2013.

- [2] Eberhard, A., Rosnes, O., Shkaratan, M., & Vennemo, H.: Africa's Power Infrastructure- Investment, Integration, Efficiency. Africa Infrastructure Country Diagnostic (AICD). Washington DC: The World Bank, 2011.
- [3] Hayes, A. F.: Answering the Call For a Standard Reliability Measure For Coding Data. Communication Methods and Measures, 1, 77-89, 2007.
- [4] Lenhard, W., & Lenhard, A.: Calculation of Effect Sizes. (Dettelbach (Germany): Psychometrica) doi:DOI: 10.13140/RG.2.1.3478.4245, 2016.
- [5] Matthewman, S., & Byrd, H. Blackouts: A Sociology of Electrical Power Failure. Social Space, 1-25, 2014.
- [6] Wijayatunga, P. D., & Jayalath, M.: Economic Impact of Electricity Supply Interruptions on the Industrial Sector of Bangladesh. Energy for Sustainable Management, 12(3), 5-12, 2008.

ISSN 1584 - 2665 (printed version); ISSN 2601 - 2332 (online); ISSN-L 1584 - 2665 copyright © University POLITEHNICA Timisoara, Faculty of Engineering Hunedoara, 5, Revolutiei, 331128, Hunedoara, ROMANIA <u>http://annals.fih.upt.ro</u>