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Abstract: Analytical methods are employed and explicit solutions for vibrational frequency are obtained for orthotropic double-
nanoplate system subjected to an in-plane magnetic field for various boundary conditions. The nonlocal governing equations 
of motion are derived via Hamilton’s principle with the consideration the Eringen’s differential nonlocal elastic law. Effects of 
initial preload (compression and tension), magnetic field strength, size of nanoplate, and boundary conditions on vibrational 
frequency are presented. 
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1. INTRODUCTION 
Carbon nanotube (CNT) and graphene sheet (GS) have a great perspective to be applied in medicine, astronautics and 
energy storage systems. For a successful application of GS as a nanostructural component and a nanomaterial it is very 
important to know its vibrational behaviour. Experimental and molecular dynamic simulation (MD simulation) show that 
in nanostructural elements with very small dimensions their mechanical properties and behaviour change when these 
dimensions become very small. Due to very small dimensions of nanoplates, it is necessary to take into account the 
influence of atomic forces to their mechanical behaviour. The application of MD simulation is too complex and expensive, 
especially in the case of more complex nanostructures with a greater number of atoms. Because of that, a few classical 
continuum theories have been developed in which the small-scale size effect has been incorporated into constitutive 
equations and governing equations of motion/equilibrium. There belong the nonlocal elasticity theory [1-4], strain 
gradient theory [5,6] and couple stress theory [7,8]. The effect of in-plane preload on vibrations of nanoplate via nonlocal 
elasticity was investigated by Murmu and Pradhan [9]. Kiani [10] applied the nonlocal shear deformation theory to 
investigate the vibration of double-walled carbon nanotubes on elastic foundation subjected to axial preload. 
Mohammadi et al. [11] investigated the free vibration behaviour of circular graphene sheet under in-plane preload using 
nonlocal continuum theory. In recent time, double-layered nanoplate structures have been in the focus of research more. 
Radić and Jeremić [12] researched the nonlocal vibration and buckling of orthotropic double-layered graphene sheets 
with different boundary conditions subjected to hygrothermal loading using nonlocal elasticity theory and Galerkin’s 
method.  
When a nanostructure is exposed to the activity of magnetic field, then, as the consequence of the activity, Lorentz’s forces 
occur, which are the body forces and act to every elementary particle of that structure. In the absence of experimental 
research on the influence of Lorentz’s forces to the vibration and buckling behaviour of nanoplates, a great significance is 
given to the theoretical research based on Maxwell’s equations.  Güven [13] studied the effects of longitudinal magnetic 
field and initial stress on the transverse vibration of single-walled carbon nanotubes. Murmu et al. [14] examined vibration 
behaviour of double-walled carbon nanotubes subjected to a longitudinal magnetic field using a nonlocal Euler-Bernoulli 
beam theory. Kiani [15] investigated the vibration and instability of a single-walled carbon nanotube in a three-
dimensional magnetic field using nonlocal Rayleigh beam theory.  Transverse vibration behaviour of embedded single-
layer graphene sheets exposed to in-plane magnetic field with simply supported boundary conditions is analysed by 
Murmu et al. [16]. Kiani [17] presented free vibration behaviour of single-layer nanoplates subjected to in-plane magnetic 
field with simply supported boundary conditions using nonlocal shear deformable plate theories. Vibration behaviour of 
double bonded orthotropic graphene sheets subjected to 2D magnetic field and biaxial in-plane preload using differential 
quadrature method was investigated by Ghorbanpour Arani et al [18]. Karličić et al. [19] investigated the nonlocal vibration 
of multi-nanoplate system embedded in viscoelastic medium under in-plane magnetic field. Transverse vibration analysis 
of the orthotropic DLGSs subjected to in-plane magnetic and initial in-plane preload with various boundary conditions 
has not been covered using nonlocal continuum mechanics until now.  
In the present paper, using differential nonlocal elastic law we study the influence of a unidirectional in-plane magnetic 
field and initial in-plane preload on the vibration behaviour of DLGS. The governing equations of motion are derived based 
on new first-order shear deformation theory (NFSDT), Eringen’s differential nonlocal elastic law and the Hamilton’s 
principle. Analytical solution for frequency is based on functions which satisfy different boundary conditions.  
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2. PROBLEM FORMULATION 
DLGS which consists of two layers of graphene sheets (GS1 and 
GS2), with length a , width b and thickness h  embedded in 
Pasternak foundation subjected to in-plane magnetic field xH  
has been illustrated in Figure 1. 
GS1 and GS2 are in the interaction by van der Waals (vdW) 
interaction forces shown by a set of springs with modulus 0k . 
Two sheets are surrounded by an external Pasternak elastic 
medium, where wk  and Gk  are Winkler modulus parameter 

and shear modulus parameter respectively. As depicted 0
xxN  

and 0
yyN  denote two uniform preload forces in the x and y 

directions. The material characteristics used for both graphene sheets are identical. 
2. THE NEW FIRST-ORDER SHEAR DEFORMATION THEORY (NFSDT) 
According to the new first-order shear deformation theory, the displacement field of the graphene sheet is expressed by 

  ( , , ) ( , )xu x y z u x y z
x
φ∂

= −
∂

   

( , , ) ( , )yu x y z v x y z
y
φ∂

= −
∂

                                                                   (1) 

( , , ) ( , )zu x y z w x y=  
where u  and v  are the displacement of mid-plane along x- and y-axis respectively,  w  is transverse displacement of a 
point on the mid-plane of the graphene sheet, and φ  is   rotation parameter. 
Nonzero strains of the NFSDT model are expressed as 
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3. NONLOCAL GOVERNING EQUATIONS OF MOTION 
In the present paper, we consider a uniaxial magnetic field. Therefore, the effective Lorenz forces in the direction of z axis 
can be written as [20]. 
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In this study only the transverse vibrations of the DLGS are significant.  
For this case, the equations that correspond to the in-plane displacements 1 1( , )u vδ δ  are not coupled with the equations 
that correspond to the displacements due to bending. If we apply the operator 2 2

01 ( )eℜ = − ∇  equations of motion can 
be expressed via the displacement 1 1( , )w φ  
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Figure 1. Geometry, coordinate system and loading for 

orthotropic double-layered graphene sheet 



 ANNALS of Faculty Engineering Hunedoara – International Journal of Engineering 

Tome XVII [2019]  |  Fascicule 2 [May] 

15 | F a s c i c u l e 2  

( )

( )

4 4 4 2 2
1 1 1 1 1

11 12 66 22 554 2 2 4 2 2

2 2 2 2 4 4 43 3
21 1 1 1 1 1 1

44 02 2 2 2 4 2 2 4

2 2

2
12 12

wD D D D H
x x y y x x

w h hH e
y y x y x x y y

φ φ φ φ

φ φ φ φ φ φρ ρ

 ∂ ∂ ∂ ∂ ∂
+ + + + − + ∂ ∂ ∂ ∂ ∂ ∂ 

    ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − = + − + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

    


                                 (5) 

Eqs. (4) and (5) are related to GS1. In the same way the equations of motion for GS2 are obtained. 
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The equations (4-7) present the equations of motion for orthotropic DLGSs. 
4. SOLUTION BY GALERKIN′S METHOD 
In this section, the equations of motion (4-7) are solved analytically using Galerkin’s method to obtain the vibrational 
frequencies of the DLGSs subjected to in-plane preload. Before solving the equations of motion, the boundary conditions 
should be defined. In this study the graphene sheet is assumed to have simply supported (S), clamped (C) edges or have 
combinations of them. These boundary conditions are given as follows [12]. 
Simply supported (S): 
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Clamped (C): 
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The analytical solutions for the vibrational frequency are obtained for two characteristics of the vibration cases.  
 Out-of-phase vibration 
In this case, two graphene sheets vibration asynchronously and it means that there is a relative displacement between 
them ( )1 2w w≠ . The equation (10) represent the value for the vibrational frequency for out-of-phase vibration 
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 In-phase vibration 
In the case of in-phase vibration, two graphene sheets vibrate synchronously and it means that there is no relative 
displacement between them 1 2( )w w= . The equation (12) represent the vibrational frequency for in-phase vibration 
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5. NUMERICAL RESULTS AND DISCUSSIONS 
The material and geometrical properties of the orthotropic graphene sheet are adopted from papers [12,21] as follows: 
Young’s  modulus 1 1130E GPa=  and 2 1050E GPa=  of the orthotropic graphene sheet, mass density 32250 /kg mρ = , 

Poisson’s ratio 12 0.112ν =  and 21 0.0803ν = , shear modulus ( )12 1 12/ 2 1 508.09G E GPaν= + =  and 

13 23 12
5 423.41
6

G G G GPa= = = , thickness of graphene sheet  0.34h nm= . In the present study we have used the value 

for the magnetic field strength  in the range  0 0.1251 /xH A nm= ÷  and in the case of a square nanoplate with the 
dimensions 10 nm  it corresponds to the value of dimensionless magnetic parameter ( 2 2

11a /xMP hH Dη= ) within the 
limits 0 180÷ . Also, we have used the values 0 0.15 / , 0.075 / , 0.75 /w Gk GPa nm k GPa nm k N m= = = , as in Ref. [12]. 
In the comparison study the following dimensionless parameters are used: 
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 Parametric study 
In this section, the effects of magnetic field strength, in-plane preload (compression and tension), various boundary 
conditions and size of nanoplate on the vibrational behaviour of DLGSs are discussed in detail. 
Figure 2(a) and (b) shows the variations of in-phase frequency with respect in-plane (uniaxial and biaxial) compression 
preload and various boundary conditions. The value of magnetic field strength is Hx=0.05 A/nm. In the case of uniaxial 
compression, the value of the frequency has the fastest decrease in the case of CSCS boundary conditions, and the slowest 
one in the case of SCSC boundary conditions.  

(a)   (b)  
Figure 2. Change in in-phase frequency with respect to compression preload (uniaxial, biaxial) and various boundary conditions for 

magnetic field strength Hx=0.05 A/nm ( 1.345nmµ = ) 
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In the case of biaxial compression shown in Figure  2b the value of the frequency has the fastest decrease in the case of 
CCCC boundary conditions, and the slowest one in the case of SSSS boundary conditions. 
In relation to Fig 2 (a) and (b), in Fig 3 (a) and (b) only the value of magnetic field strength has been increased to Hx=0.1 
A/nm. All the other parameters have the same value. A significant influence of magnetic field on the vibrational behaviour 
of DLGS can be seen. In both cases of (uniaxial and biaxial) compression the value of the frequency has a faster decrease 
in the case of CCCC and SCSC boundary conditions.  

(a) (b) 
Figure 3. Change in in-phase frequency with respect to compression preload (uniaxial, biaxial) and various boundary 

conditions for magnetic field strength Hx=0.1 A/nm ( 1.345nmµ = ) 

From Figure 4 (a) and (b) it can be clearly seen that in the case of out-of-phase vibration the value of the frequency for the 
case of CCCC and CSCS boundary conditions decreases significantly faster with the increase of value of in-plane preload 
(for uniaxial compression) in relation to the case of in-phase vibration. For biaxial compression, it can be noticed from 
Figure  4b that the value of the frequency has the slowest decrease for the case of SSSS boundary conditions, and the 
fastest one for the case of CCCC boundary conditions. 

(a) (b) 
Figure 4. Change in out-of-phase frequency with respect to compression preload (uniaxial, biaxial) and various boundary conditions 

for magnetic field strength Hx=0.05 A/nm ( 1.345nmµ = ) 

At the value of magnetic field strength Hx=0.1 A/nm in the case of out-of-phase vibration from Figure  5(a) and (b) it can 
be noticed that the value of the frequency for the case of CCCC boundary conditions decreases significantly faster in 
relation to other three cases of boundary conditions. 

(a) (b) 
Figure 5. Change in out-of-phase frequency with respect to compression preload (uniaxial, biaxial) and various boundary conditions 

for magnetic field strength Hx=0.1 A/nm ( 1.345nmµ = ) 

The effects of increasing the magnetic field strength on the in-phase frequency of rectangular DLGS (a=10nm, b=15nm) 
with different boundary conditions are investigated in Figure  6 (a) and (b). In Figure  6a DLGS is loaded with uniaxial 
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compression force N=2 nN/nm, and in Figure  6b with uniaxial tension force N=10 nN/nm. With the increase of value of 
the magnetic field strength the value of the frequency increases for all four cases of boundary conditions. The value of the 
in-phase frequency in the case of uniaxial compression has the fastest increase in the case of CSCS boundary conditions 
and the slowest one in the case of SCSC boundary conditions. In the case of uniaxial tension (N=10 nN/nm) shown in 
Figure  6b the value of in-phase frequency for CCCC and CSCSC boundary conditions is very close. It is the same with SSSS 
and SCSCS boundary conditions. In the case of activity of uniaxial tension force, the value of the in-phase frequency 
increases proportionally for all four observed cases of boundary conditions. 

(a) (b) 
Figure 6. Change in in-phase frequency with respect to magnetic field strength, various boundary conditions and uniaxial in-plane 

(compression and tension) preload  ( 1.345nmµ = ) 

Figure  7 (a) and (b) represents the effects of the magnetic field strength and various boundary conditions on out-of-phase 
frequency for rectangular DLGS (a=10 nm, b=15 nm). In Figure 7a DLGS is exposed to the activity of uniaxial compression 
force (N=4 nN/nm), and in Figure 7b to the activity of uniaxial tension force (N=4 nN/nm). It is obvious from Figure 7a that 
in the case of activity of uniaxial compression force with the increase of value of the magnetic field strength the value of 
the out-of-phase frequency has the fastest increase in the case of CSCS boundary conditions. From Figure 7b it can be 
noticed that the activity of uniaxial tension force in the case of out-of-phase vibrations causes the same effect as in the 
case of in-phase vibrations shown in Figure 6b. 

(a) (b) 
Figure 7. Change in out-of-phase frequency with respect to magnetic field strength, various boundary conditions and uniaxial in-

plane (compression and tension) preload   ( 1.345nmµ = ) 

Figs. 8, 9, 10 and 11 illustrate the effect of the size of the graphene sheet and increasing of the magnetic field strength on 
the in-phase frequency for SSSS, CCCC, SCSC and CSCS boundary conditions respectively. In Figure 8a, 9a, 10a, 11a DLGS 
is exposed to the activity of biaxial compression force, and in Fig 8b, 9b, 10b, 11b to the activity of biaxial tension force. 

(a) (b) 
Figure 8. Change in in-phase frequency with respect to length of DLGS, magnetic field strength and biaxial in-plane (compression 

and tension) preload for SSSS boundary conditions ( 1.345nmµ = ) 

It can be concluded from Figure 8 and Figure 9 that in the case of square nanoplates (a 15 )b nm= = , the change of 
magnetic field strength value under SSSS and CCCC boundary conditions does not affect the in-phase frequency value. 
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(a) (b) 
Figure 9. Change in in-phase frequency with respect to length of DLGS, magnetic field strength and biaxial in-plane (compression 

and tension) preload for CCCC boundary conditions ( 1.345nmµ = ) 

(a)  (b) 
Figure 10. Change in in-phase frequency with respect to length of DLGS, magnetic field strength and biaxial in-plane (compression 

and tension) preload for SCSC boundary conditions ( 1.345nmµ = ) 

It can be seen from Figure 10 that, in the case of rectangular nanoplates (a 12 , 15 )nm b nm≈ = , the change of 
magnetic field strength value under SCSC boundary condition does not affect the in-phase frequency value. 
Finally, from Figure 11 it can be noticed that in case of rectangular nanoplates (a 18 , 15 )nm b nm≈ = , the change of 
magnetic field strength value under CSCS boundary condition does not affect the in-phase frequency value. 

(a) (b) 
Figure 11. Change in in-phase frequency with respect to length of DLGS, magnetic field strength and biaxial in-plane (compression 

and tension) preload for CSCS boundary conditions ( 1.345nmµ = ) 

These three cases, when the value of the in-phase frequency is independent from the change of value of the magnetic 
field strength at certain dimensions of DLGS occur in the case of biaxial compression and biaxial tension. 
6. CONCLUSION 
In this paper, by using Hamilton’s principle, the equations of motion and boundary conditions were obtained base on the 
new first order shear deformation theory in the framework of the Eringen’s differential nonlocal elastic law. The Galerkin’s 
method has been used to solve the equations of motion of the DLGS for SSSS, CCCC, CSCS and SCSC boundary conditions. 
Numerical results are presented to investigate the effects magnetic field strength, initial preload (compression and 
tension), size of nanoplate and boundary conditions on vibrational frequency. It is observed that increasing the in-plane 
compression preload degrades the graphene sheet stiffness and frequency reduce until a critical point in which frequency 
becomes zero. Also, the frequency increase with the increase of the magnetic field strength for rectangular DLGS 
(a 10 , 15 )nm b nm= = . 
Note: This paper is based on the paper presented at COMETa 2018 – The 4th International Conference on Mechanical 
Engineering Technologies and Applications, organized by Faculty of Mechanical Engineering, University of East Sarajevo, in 
Jahorina, BOSNIA & HERZEGOVINA, in 27–30 November, 2018. 
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