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Abstract: This paper analyzes a quasi-static thermal stress of moderately thick disk with time-dependent heat source impulse. 
The lower and upper faces of the plate is kept at zero temperature, while the inner and outer circular curved surface is thermally 
insulated. The Laplace transform has been found convenient for obtaining the solution of particular distribution of temperature, 
which satisfies the time-dependent heat conduction equation. Thermoelastic Airy's function and harmonic potential functions 
are used to obtain the displacement components and its associated stresses. The results are obtained in a form in terms of 
Bessel’s function. The results for temperature, displacement, and stresses have been computed numerically considering special 
functions and illustrated graphically. 
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1.  INTRODUCTION 
Many studies have appeared in the literature about the transient response of the plate and its associated thermal stresses. 
The following references are chosen because they include mathematical methods for deriving the response formulas 
contained in present description. In classical papers, Nowacki [1] has determined steady-state thermal stresses in a thick 
circular plate subjected to an axisymmetric temperature distribuion on the upper face with zero temperature on the lower 
face and the circular edge. Further Roy Choudhuri [2] has succeeded in determining the quasi-static thermal stresses in a 
circular plate subjected to transient temperature along the circumference of a circle over the upper face with lower at zero 
temperture and the fixed circular edge thermally insulated. Nasser [3, 4] proposed the concept of heat sources in 
generalized thermoelasticity and applied to a thick plate problem. In all aforementioned investigations an axisymmetrically 
heated thick plate has been considered and its results are more useful in engineering problems. Recently, Kulkarni and 
Deshmukh [5] present paper deals with the determination of a quasi-static thermal stresses in a thick circular plate 
subjected to arbitrary initial temperature on the upper face with lower face at zero temperature and the fixed circular edge 
thermally insulated using Lapalce method.  
Similarly, Kulkarni and Deshmukh [6] has also determinated the transient heat conduction and thermal stresses of a thick 
annular disc subjected to arbitrary heat flux on the upper and lower surfaces where as the fixed circular edges are at zero 
temperature, using integral transform technique. Varghese and Lalsingh [7] has determined the thermo-elastic stress in a 
thick disc due to interior heat generation within the solid, under thermal boundary condition, which is subjected to 
arbitrary initial temperature on the upper and lower face at zero temperature, and the fixed circular edges with additional 
sectional heat supply, using unconventional integral transform. Okumura [8] has analysed the thermal-bending stresses 
in an annular sector by the theory of moderately thick plates. Saidi and Baferani [9] investigated the thermal buckling of 
simply supported moderately thick functionally graded annular sector plate using first order shear deformation plate 
theory and obtained the solution by using an analytical method. Hu et al. [10] presented a set of high order partial 
differential equations for elastic rectangular thick plate with four edges completely clamped support base on Mindlin 
theory and solved by the double finite integral transform method. Saheb and Aruna [11] developed a simple and efficient 
coupled displacement field method to study the buckling load parameters of the simply supported moderately thick 
rectangular plates. Genckal et al. [12] studied the dynamic responses of composite plates on elastic foundation subjected 
to impact and moving loads by using Galerkin's method, then the equations are solved by using the Runge-Kutta method. 
However, they did not consider a thermoelastic problem in which a source is generated on the basis of a linear function 
of temperature that satisfies the time-dependent heat conduction equation.  
Based on previous literature on moderately-thickness annular disks, the authors observed that no analytical procedure was 
established in view of the generation of internal heat sources in the body. Due to the lack of research in this area, the 
author was motivated to conduct this research. Theoretical calculations have been studied using dimensional parameters, 
while the graphical calculations are carried out using dimensionless parameters. The success of this novel research lies in 
new mathematical procedures that have adopted a simpler optimized design approach in terms of material utilization and 
technical performance, particularly in determining the thermoelastic behavior of moderately-thickness disks engaged as 
the foundation of pressure container, furnaces, etc. 
2. FORMULATION OF THE PROBLEM              
We consider a moderately thick annular plate occupying the space 2:{( , ) :D r z R∈ ,a r b< < 0 }z< <  under unsteady-
state temperature field with a time-dependent internal heat sources within it.  
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 Unsteady-state temperature field 
The governing equation for heat conduction in isotropic solids is given as follows 

12 ( , , ) ( )[ ( ) ( )],0 0 1 0 1T r z t q t H r r H r r r r r
tκ
∂ ∇ − = − Φ − − − < < ∂ 

                                          (1) 

in which ( , , )T T r z t=  is the temperature change, 
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subjected to the boundary conditions 
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 Displacement and stress field 
Let ur  and uz  be components of displacement is expressed as 
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                                                                (4) 

in which G  and υ  denote the shear modulus and Poisson’s ration, respectively, and 
2 2 20, 0, .1 3 1

Eαφ φ χ τ
υ

∇ = ∇ = ∇ =
−

                                                                            (5) 

where ,1 3φ φ  are harmonic functions, χ  is a thermoelastic potential function, T Tiτ = −  is temperature change with Ti  
as initial temperature, respectively. 
The components of stress taking account of heat is as follows 

2 , 2 ,
1 2 1 2 1 2 1 2

2 , 2
1 2 1 2

E EG e G err rr
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in which 
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where ,..,rr rzσ σ  are the components of stresses, ,..,rr rzε ε  are the components of strain, α  represent the 

coefficient of linear thermal expansion and E  is Young's modulus and  e  is the cubical dilation, respectively. 
For the traction-free surfaces the stress functions 

00 0rz zz rz zzz z z zσ σ σ σ= = = == = = = 
                                                (8) 

The equations (1) to (8) constitute the mathematical formulation of the problem. 
3. SOLUTION TO THE PROBLEM 
 Solution for the temperature distribution 
Applying the Laplace transformation in Eqs. (1) and (4) 

2 0 0 0( , , ) (1 e )[ ( ) ( )]0 12
0

qp ptT r z p H r r H r r
p tκ
Φ  −∇ − = − − − − − 

 

                                           (9) 

0
0

T TT T
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∂ ∂
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= = ∂ ∂= =


                                                          (10) 

in which the symbol ( ¯ ) represents a function in the transformed domain and ( , , )T r z p  is the transformed function of 
( , , )T r z t  with Laplace parameter as p . 

Now applying the finite Fourier sine transform in Eqs. (9) one obtains 
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where ( , , )T r m p  is the transform of  ( , , )T r z p  with respect to nucleus is sin( / )m zπ  .  

To obtain the expression for the temperature ( , , )T r m p  of Eqs. (11)-(12), we assume 
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= ∑
=

                                                                         (13) 
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Putting Eq. (13) and (14) in Eq. (11), one obtains 
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in which 2 2
mn m nγ β κ α κ= + . 

Taking the theory of Bessel function on Eq. (15), one obtains 
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Using Eqs. (13), (15), (17) we get, 
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Now applying the inverse Fourier sine transform to Eq. (18), one yield 
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Applying the Laplace inversion theorems on Eq. (19), one yield 
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where: 
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 Solution for potential functions and thermal stresses 
Now assume ,1 3φ φ  are harmonic functions and χ  is a thermoelastic potential function that satisfies Eq. (5) as 
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Using Eqs. (21)-(23) in Eq. (4), one gets the required displacement components. The components of stress given in Eq. (6) 
can be obtained using displacement components and strain components given in Eq. (7). Finally ,1C  ,1D 1E  and 1F  
are the unknown constants which can to be determined using traction free conditions given in Eq. (8) as 

, ,1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2
,3 1 3 1 3 1 3 1 3 4 1 4 1 4 1 4 1 4
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where,                                         
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Using Cramer’s Rule, one obtains constants as 
3 52 41 ; 1 ; 1 ; 1

1 1 1 1
C D E F

∆ ∆∆ ∆
= = = =
∆ ∆ ∆ ∆

                                                                        (25) 

where 
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1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
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The resulting equation of stresses can be obtained by substituting the unknown constant obtained from Eq. (25). The 
equations of stresses are rather lengthy, and the same has been omitted here for the sake of brevity but have been 
considered during graphical discussion using MATHEMATICA software. 
4. NUMERICAL RESULTS, DISCUSSION AND REMARKS 
For the interests of simplicity of calculation, we introduce the following dimensionless values 

2/ , / , / , / ,0
/ , / ( , , )0 0

r r b z z b t b T T T
u u E T E T i j ri i ij ij

τ κ
α σ σ α θ

= = = =

= = =
                                                        (26) 

Substituting the value of Eq. (26) in Eqs. (20) and components of stresses, we obtained the expressions for the temperature 
distribution and thermal stresses respectively for the numerical discussion. The numerical computations have been carried 
out for moderately thick disk having the thermo-mechanical properties: modulus of elasticity E = 70 GPa, Poisson’s ratio υ 
= 0.35, thermal expansion coefficient α = 23×10-6/0C, thermal diffusivity κ = 84.18×10-6 m2s−1 and thermal conductivity 
λ = 204.2 Wm−1K−1. The physical parameter for the plate as 0.2m, 1m, 0.08ma b= = =  and =0T 1500C. In order to 
examine the influence of internal heat source on the moderately thick disk plate, the numerical calculations were 
performed for all the variables, and numerical calculations are depicted in the following figures with the help of 
MATHEMATICA software.  

 
Figure 1: Temperature distribution along r -direction for 

different values of time 

 
Figure 2: Temperature distribution along time for different 

values of r  

 
Figure 3: Temperature distribution along z -direction for 

different values of time 

 
Figure 4: Radial Stress rrσ  along r -direction for different 

values of z  

 
Figure 5: Axial Stress zzσ  along z -direction for different 

values of r  

 
Figure 6: Tangential Stress σθθ  along r -direction for 

different values of 
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Plotted Figures 1-6 illustrate the numerical results of temperature distribution and the thermal stresses of the moderately 
thick disk due to internal heat generation within the solid. From the Figure 1, it is noted that the behaviour of temperature 
trend is decreasing along redial direction in different value of time due to the available internal heat supply. 
Figure 2 shows the temperature distribution with increase of time trend for different radius value. In this figure, 
temperature increases gradually towards the outer end to the internal heat energy, but a discontinuity in temperature was 
observed at 0.4τ = , and it may be due to the fixed time parameter 0.40τ = . In the Figure 3, it is observed that the 

temperature increases linearly along the axial direction for different value of time due to the thickness. Figure 4 explains 
that the stresses are initially on the higher side which goes on decreasing as along the radial direction at different values 
of z . Figure 5 shows the distribution of axial stress along the z - direction. It is noted from the figure that the stress along 
axial direction attains a maximum at centre portion due to the accumulation of heat energy whereas at both boundaries 
the stress is zero. From Figure 6, it can be concluded that tangential stress will be more at the initial point and gradually 
decreases along the radial direction. 
5. CONCLUSIONS 
The proposed analytical solution of transient thermal stress of the moderately thick plate was handled in cylindrical 
coordinate system with the presence of a source of internal heat. To the author’s knowledge, there have been scarce of 
reports available so far in which sources are generated according to the linear function of the temperature in mediums in 
the form for moderately thick plate of finite height with Dirichlet type boundary conditions. The temperature is supposed 
to satisfy the general quasi-static heat conduction equation having ramp-type internal heat source in the plate. By using 
the Laplace integral transformation technique and classical method, the solution of thermal distribution, thermal stresses 
are solved. Compared with other methods proposed by the researchers, the integral transformation technology presented 
here is relatively simple and widely applicable. The results obtained for our research can be described as follows: 
 The advantage of this method is its versatility and mathematical ability to handle different types of mechanical and 

thermal boundary conditions. 
 The advantage of this method is its generality and its mathematical power to handle different types of mechanical 

and thermal boundary conditions. 
 The maximum tensile stress shifting from central core to outer region may be due to heat, stress, concentration or 

available internal heat sources under considered temperature field. 
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