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Abstract: Asymptotic analysis of the generalized thermoelasticity equations is carried out for zero surface traction and heat 
conducting isotropic plates in the vicinity of the cut-off frequencies. Thickness of shear resonance frequencies are also studied 
in the context of generalized thermoelasticity. The exact dispersion relations are also derived giving frequency as a function of 
wave number. On taking the thermal relaxation time zero, the obtained results in the analysis reduce to the conventional 
coupled theory of thermoelasticity. Similarly when the coupling constant is taken identically equal to zero, the strain and thermal 
fields are uncoupled from each other. In this case, the results can be obtained from the uncoupled theory of thermoelasticity. 
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1. INTRODUCTION  
The use of fiber-reinforced composites is prevalent in modern structures, especially those for which a strength-to-weight ratio is of 
primary concern. For such materials a preferred direction, usually termed the fiber direction, exists and a transversely isotropic model 
is most commonly employed. For many applications fiber-reinforced materials are formed into bonded layers, each with a specific 
fiber orientation relative to some fixed reference direction. The practical importance of such structure has resulted in a high number 
of publications aimed at elucidating the mechanical and dynamic properties of layered media, many including layers composed of 
fiber-reinforced material. In dynamic problems concerning fiber-reinforced media it is common to use a continuum model, whereby 
the fibers are assumed to be an inherent material property, rather than some form of inclusion. Wave propagations in unbounded 
homogeneous layered media have been well known, and many methods have been proposed. The exact dispersion relations can 
be found in many good books as [1, 2]. 
The heat conduction equations for uncoupled and coupled theories of thermo-elasticity are of the diffusion type and predict an 
infinite speed of propagation of the heat wave which is physically unacceptable. To get rid of this absurdity of the classical 
approach, theories of generalized thermoelasticity were developed. Presently there are various gene-ralized approaches but the 
theories proposed by Lord and Shulman [8] and Green and Lindsay [9] are called LS and GL theories respectively are most 
popular. These theories have been developed by introducing one or two relaxation times in the thermoelastic processes; 
intending to eliminate the paradox of an infinite speed for the propagation of thermal signals.  
The LS model is based on a modified Fourier’s law, but the GL model even allows second sound without violating the classical 
Fourier’s law. These models of generalized thermoelasticity are structurally dissimilar, and one cannot be obtained as a particular 
case of the other, yet they ensure finite speeds of propagation for thermal wave. Wave types occurring in bounded layered media 
are very complicated, and in thermoelasticity, the problem becomes even more complicated, because in thermo-elasticity, 
solutions to both the heat conduction and thermoelasticity problems for all the layers are required. Thermal and mechanical 
boundary and interface conditions are also to satisfy by these solutions. As a result, conventional procedure for thermoelastic 
analysis of multilayered medium resulted in having to solve system of two simultaneous equations for a large number of 
unknown constants [3-7]. 
The classical theory of dynamic thermo-elasticity that takes into account the coupling effects between temperature and 
strain fields involves the infinite thermal wave speed. The theories of generalized thermoelasticity have been developed 
in an attempt to eliminate this paradox of infinite velocity of thermal pro-pagation. At present, there are two theories on 
the generalized thermoelasticity: the first is by Lord and Shulman [8], and the second by Green and Lindsay [9]. Verma and 
Hasebe [10] studied the propagation of thermoelastic vibrations in plates using [8]. Verma et al. have studied wave 
propagation in anisotropic media in the context of generalized thermoelasticity with different hypotheses [11-15]. 
In this paper, an asymptotic analysis of the equations of thermoelasticity, for a heat conducting isotropic plate and zero surface 
traction is carried out in the vicinity of the cut-off frequencies, family of thickness shear resonance frequencies are studied in the 
context of generalized thermoelasticity. The exact dispersion relation is also derived giving frequency as a function of wave 
number. We begin with brief derivation of the exact dispersion relation associated with small amplitude vibrations of isotropic 
thermoelastic layer. The long-wave high frequency approximations of the dispersion relations the associated coupled 
thermoelastic vibrations are derived. Comparison of the numerical and asymptotic solutions of the dispersion relation for cut-
off frequencies is also made. 
2. FORMULATION 
The generalized coupled field governing dynamic thermoelastic processes for homogeneous isotropic materials and in the 
absence of body forces and heat source for Lord and Schulman [8], theory can be written as: 
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    ( ) Tµ λ µ γ ρ∇ + + ∇∇⋅ − ∇ =u u u              (1) 
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0 0 0( ) [( )K T C T T Tρ τ γ τ∇ + + = ∇ + ∇u u                                        (2) 

where  

   (3 2 ) tγ λ µ α= +                                                                                       (3) 
λ , µ  are Lamé’s parameters. ρ  is the density of the medium. Ce and τ0 are the specific heat at constant strain and thermal 
relaxation time, respectively. K and αt are the coefficient thermal conductivity and linear thermal expansion, respectively 
an overdot denotes the partial derivative with respect to the time variable t. 
We define the following dimensionless quantities: 
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1v  is the velocity of compressional waves and k1  =  K /ρCe  is the thermal diffusivity in the x-direction. Moreover ε1 is the 

thermoelastic coupling constant, ∗
0τ  is the thermal relaxation constant. Introducing the above quantities in (4) and (5) in  Eqs. (1) 

and (2), after suppressing the ∗, can be written as 

                   
2
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The stress-displacement, temperature and temperature gradient relevant to our problem in the plate are: 
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3. ANALYSIS  
For a plane harmonic wave travelling in the x1-direction, the solutions 1 2 3,  and u u u , and T of Eqs. (6) and (7) take the 
form: 

                ( ) [ ]3
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where k is the wave number and ω  is the frequency of a wave travelling with phase velocity v = ω/k in a direction within the plane 
of the plate at an angle θ  with the x1-axis and α is to be determined, in terms of  k, θ, ω and material constants. From the equation 
of motion, substituting Eqs. (12) into the equations of motion and heat conduction, Eqs. (6) and (7) yields: 
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where  
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The existence of nontrivial solutions for 1 2 3, ,U U U  and 4U requires the vanishing of the determinant Eq. (13), and yields the 
following polynomial equation: 
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4. DISPERSION RELATION 

If the three distinct roots of the Eq. (17) are denoted by 2
2

2
1 ,αα  and 

2
3α , the solutions 1 2 3, ,u u u and T are obtainable 

as linear combinations of the linearly independent solutions, thus: 
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where 3exp( )m mE k xα+ = , 3exp( )m mE k xα− = −  

(m =1,2,3) and )(
1

iU  are disposal constants and are not independent as they are linked through the equation of motion and heat 
conduction. By making use of Eq. (14) stresses and temperature gradient can be expressed as: 
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The dispersion relation associated with the plate is now derived from equations by applying traction free boundary 
conditions: 
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The symmetry of the plate about x3 =0 allows us to simplify the system of six homogeneous equations in six unknowns 
into two system of three equations in three unknowns, which then yield the following dispersion relations associated with 
the plate: 
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The condition that the system of Eqs. (27-29) and (30-32) admit a non-trivial solution give rise to the dispersion relations associated 
with flexural and extensional waves respectively. 
5. AN ASYMPTOTIC ANALYSIS 
 Long wavelength  
In the numerical section different low wave number limiting behavior was observed for extensional and flexural waves. The limiting 
behavior of the flexural dispersion relation under a plane strain approximation in which only the fundamental mode retains a finite 
value as 0kd →  for extensional waves however, both the fundamental mode, the first mode and thermal mode have finite wave 
speed in this limit, thus giving an additional mode to three long wave limits for the plate in the generalized theory of thermoelasticity. 
 Short wavelength   
We now seek approximation for the frequencies, as function of wave number, in the long wave high frequency motion regime, that 
is in the vicinity of the non-zero cutt off frequencies. It is known that for this type of motion: v →∞  as kd →∞ . Analysis of the 
relative orders of the coefficients of the secular equation suggests that two roots of the order 2( )O v , with the third root of order one. 
More specifically, approximation for 2 2

1 2,α α  and 2
3α   are taken into account. 

6. NUMERICAL DISCUSSIONS AND CONCLUSIONS 
In general the waves are dispersive; to discuss the long and short waves, it is 
required to find numerical solution of the Eqs. (27-29) and (30-32). Computation 
for the symmetric (flexural) and antisymmetric modes (extensional) have been 
carried out for an aluminum plate whose physical data are given in Table 1. 

The phase and group velocities, ( v and dvU v k
dk

= +


 , respectively) dispersion 

curves, are plotted as a function of the wave-number assuming the thickness d 
of the plate is fixed. 
These curves have been calculated from expression based on the dispersion relation in Eqs. (27-29) and (30-32), which are 
decoupled characteristic equations corresponding to symmetric and anti-symmetric modes of vibrations in LS theory of 

Table 1. Physical Properties of an Aluminum Alloy 
Young’s modulus (E) 72.6 GPa 

Poisson ratio (ν) 0.33 
Density (ρ) 2800  kg.m-3 

Specific heat (Ce) 960  J.kg-1.K-1 
Thermal diffusivity (k1) 7×10-5 m2 .s-1 

Expansion coefficient (αt) 2.35×10-5 K-1 
Initial temperature (T0) 293 K 
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generalized thermoelasticity. The additional new mode to those already observed in purely elastic materials is the quasi-thermal T-
mode. Dispersion curves for symmetric and antisymmetric modes in LS theory of generalized  thermoelasticity  are shown in Figs. 
1-4, the various modes get merged and then approach each other as wave number increases, where the phase and group velocities 
tend towards the Rayleigh surface wave speed. 

 
Figure 1. Dispersion curves of first symmetric and 

antisymmetric modes in the LS Theory 

 
Figure 2. Dispersion curves of second symmetric and 

antisymmetric modes in the LS Theory 

 
Figure 3. Dispersion curves of third symmetric and 

antisymmetric modes in the LS Theory 

 
Figure 4.  Dispersion curves of fourth symmetric and 

antisymmetric modes in the LS Theory 
The wave modes are observed to be more affected at the zero wave number limits, due to the thermomechanical effects. When 
the thermal relaxation time is zero, then the results obtained in the analysis reduce to the conventional coupled theory of thermo-
elasticity. When the coupling constant is identically equal to zero, the strain and thermal fields are uncoupled from each other. In 
this case the results can be obtained from the uncoupled theory of thermoelasticity. 
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