

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA

2004, Tome II, Fascicole 1

A VANE ANALYSIS BY FINITE ELEMENT METHOD

Tiberiu Stefan MĂNESCU Viorel CÂMPIAN Dorian NEDELCU Camelia BRETOTEAN – PINCA

"Eftimie Murgu" University Reşiţa, Romania

Abstract: The paper propose a vane analysis by the finite element method, from mechanical conduct point of sight, as response to exterior forces action. The analysis will be made using a projection and assisted by calculator analysis program: Microstation Modeler – for 3D model generation and COSMOS/DesignSTAR – for analysis by the finite element method.

Key words: vane, finite element, deformations, tension state.

1. INTRODUCTION

The vane has 1620 kg, disc diameter of 1470 mm and is made of T20Mn14N material, fig. 1, having the next characteristics: $R_{p0, 2} = 295 \text{ N/mm}^2$, $R_m = 600 \text{ N/mm}^2$, $A_5 = 18 \%$, Z = 25 % respective KCU_{300/2} = 49 J/cm².

Fig.1. The vane's structural description

2. WORK METHODOLOGIE

The piece was modeled 3D by Microstation Modeler, fig. 1 and exported in Parasolid format to the finite element analysis program finit COSMOS/DesignSTAR, version 3.0/2001, fig. 2, having available the next analysis types:

- static linear and nonlinear analysis;
- modal: own frequencies and vibrating modes;
- buckling calculus;
- □ linear and nonlinear heat transfer in permanent and transitory regime;
- fluids flowing;
- electromagnetic analyze.

Fig.2. The vane's geometrical model

In the present paper it will be made a static linear analyze, having the followings periods:

□ 3D model import –3D generation vane was realized by Microstation Modeler, an assisted by calculator analysis program projection, what offers strog posibilities of geometric modulation.

Defining study of case – part from which are defined analyze characteristics

(the name, the type of the analyze: static linear and discretisation type, respective **Solid** (for moderated parts through solids) or **Shell** (for moderated parts trough surfaces); for vane model was chosen discretisation of type **Solid**;

□ *defining material* – materials can be selected from the library of materials, provided with the program (fig. 3), which includes materials organized on categories: steel, iron, aluminum, copper, etc., each

Input Iype: Linear Elastic Isotropic Centor library Lounch Gentor library Lounch Gentor library Lounch Gentor library Lounch Gentor library Gentory Gentor library Gentor library Gentor library G	Input Iype: Linear Elastic Isotopic Gentor library Leunch Library fies Use gress strein curve Use large displacement formulation Use large di			nodel	– Material n	elect material source
Centor library Launch Conswkmail lib Cosswkmail lib Cosswkmailib Cosswkmail lib Cosswkmail lib Cosswkmail lib Co	Centor library Launch Coswkmat.lib Coswkmat		c	Linear Elastic Isotro	<u>T</u> ype:) Input
Coswkmat.ib Coswkmat	Coswkmat.lib Use large strain formulation Coswkmat.lib Use large displacement formulation Coswkmat.lib Use large displacement formulation B Alloy Stee Estaticity modulus (1st di 2141404 B Alloy Stee Exet Stair B Pain Cast Shear modulus (1st di 2141404 B Pain Cast Shear modulus (1st di 2141404 B Pain Cast Shear modulus (1st di 2141404 B Alloy Stee Shear modulus (1st di 2141404 B Pain Cast Shear modulus (1st di 2141404 B Alsi 1020 Shear modulus in Xr dir 805575.81 B Alsi 1020 Shear modulus in Xr dir 805575.81 B Stainless (Internet Steepingh (X dir) 7380.967 Kg/cm ² 2 ShStailess (Internet Steepingh (X dir) 7380.957 Kg/cm ² 2 Shalloy Library Compressive steepingh (X dir) 7380.957 Kg/cm ² 2 Shalloy Library Compressive steepingh (X dir) 7380.957 Kg/cm ² 2 Shalloy Library Compressive steepingh (X dir) 7380.957 Kg/cm ² 2 Shalloy Library Compressive steepingh (X dir) 7380.957 Contigrade Library Compressive steepingh (X dir) 7380.957 Contigrade Library Compressive steepingh (X dir) 7380.957 Contigrade Library Comonultrivitive (X			stress strain curve		Centor library Launch
Use large displacement formulation Coswkmat lib Use large displacement formulation Description Lipdated lagrangian C Total lagrangian S Starles Starles Starles Starles ALFX Coeff. ot thermal expans 1.3-e005 / Carligade	Description Value Units Tend Coswkmat.lib Image: Steel Image: Steel <td><u>ب</u></td> <td>1</td> <td>large strain formulatio</td> <td>L Use</td> <td>ibraru files</td>	<u>ب</u>	1	large strain formulatio	L Use	ibraru files
coswkmat.lib C Updated legrengen C Total legrengen B Alloy Stee Exact Alloy Exact Alloy C ast Alloy Exact Alloy Exact Alloy B Plain Cat. Exact Alloy Exact Alloy B Cast Catb Exact Catb Exact Catb B Cast Catb SIGXC Compressive stength (X dir) B Alsi 1020 SIGXC Compressive stength (X dir) B Alsi 304 SIGYLD SiGXC Compressive stength (X dir) B Stainless * ALFX Coeft. of themal expans	Coswkmat.lib C Updated legrengien Totel legrengien Steel Baloy Steel Cost Stain Tenety Description Baloy Steel Baloy Steel Baloy Steel Tenety Baloy Steel Baloy Steel Baloy Steel Tenety Baloy Steel Baloy Steel Baloy Steel Tenety Baloy Steel Baloy Steel Baloy Steel Baloy Baloy Steel Baloy Steel Baloy Baloy Baloy Steel Baloy Baloy Baloy Baloy Baloy Baloy Baloy Baloy Baloy Stainless SiGYLD Baloy Baloy Baloy Baloy Baloy Baloy Baloy <	lation	nulation	large displacement fo	🗖 Use	Library mes
Image: Steel Property Description Value Units Temp. C B Alloy Stee EX Elasticity modulus (1st di 2141404 kg/cm^2 Cast Alloy NUXY Poisson's ratio in XY dir 0.28 B Plain Cast EXY Shear modulus in XY dir 0.28 B Cast Steir EXY Shear modulus in XY dir 0.05775 81 kg/cm^2 B DENS Mass Density 0.0077 kg/cm^2 SIGXC Tensile strength (X dir) 7380.967 kg/cm^2 B AISI 1020 SIGXC Compressive strength (X dir) 1.36.0057 kg/cm^2 B AISI 304 SIGYLD Yield stress 6326.54.37 kg/rcm ² 2 B Stainless ! ↓ ALFX Coeft. of thermal expans 1.3e-005 /Centigrade	Image: Steel Property Description Value Units Ten Image: Steel EX Elasticity modulus (1st d) 2141404 kg/rcm ² 2 Image: Steal NUXY Poisson's ratio in XY dir 0.28 Image: Steal GXY Shear modulus in XY dir 0.28 Image: Steal DENS Mass Density 0.0077 kg/rcm ² 2 Image: Steal cast SIGXT Tensile strength (X dir) 7380.967 kg/rcm ² 2 Image: Stainless (Image: Strength (X dir) 7380.967 kg/rcm ² 2 SIGXT Image: Stainless (Image: Strength (X dir) SIGXT SIGXT SIGXT Compressive strength (X dir) Kg/rcm ² 2 Image: Stainless (Image: Strength (X dir) SIGXT SIGXT Compressive strength (X dir) Kg/rcm ² 2 Image: Stainless (Image: Strength (X dir) SIGXT Compressive strength (X dir) Kg/rcm ² 2 Image: Stainless (Image: Strength (X dir) SIGXT Compressive strength (X dir) Kg/rcm ² 2 Image: Stainless (Image: Strength (X dir) SIGXT Compressive strength (X dir) Kg/rcm ² 2 Image: Stainless (Image: Strength (X dir) SIGXT Compressive strength (X dir)	C Tgtal lagrangian	0	🖲 Updated lagrangiar	0	coswkmat.lib
Image: Constraint of the state of	Image: Steel Property Description Value Units Ten B Allay Stee EX Elasticity modulus [1st d] 2141404 kg/cm^2 EX EX Elasticity modulus [1st d] 2141404 kg/cm^2 EX EX EX Elasticity modulus [1st d] 2141404 kg/cm^2 EX EX EX Elasticity modulus [1st d] 2141404 kg/cm^2 EX EX EX Elasticity [1st d] 2141404 kg/cm^2 EX EX Elasticity [1st d] 2141404 kg/cm^2 EX EX EX EX Elasticity [1st d] 2141404 kg/cm^2 EX EX Elasticity [1st d] 2141404 Kg/cm^2 EX EX Elasticity [1st d] 2141404 Kg/cm^2					
B Alloy Stee EX Elasticity modulus (1st di 2141404 kg/cm^2 B Cast Alloy NUXY Poisson's ratio in XY dir 0.28 B Cast Stair GXY Shear modulus in XY dir 0.05575.81 kg/cm^2 B Plain Cart. DENS Mass Density 0.0077 kg/cm^2 B Cast Carb SIGXT Tensile strength (X dir) 7380.967 kg/cm^2 B AISI 1020 SIGXC Compressive strength (X dir) kg/cm^2 B Stairles ' ALPX Coeff. of thermal expans 1.3e.005 /// Certigade	B Alloy Stee EX Elesticity modulus (1st di 2141404 kgt/cm^2 B Cast Alloy NUXY Poisson's ratio in XY dir 0.28 NUXY B Cast Stair GXY Shear modulus in XY dir 0.08 NUXY B Past Stair DENS Shear modulus in XY dir 0.09575.81 kgt/cm^2 B Plain CatL DENS Mass Density 0.0077 kgt/cm^2 B Cast Carb SIGXT Tensile strength (X dir) 7380.967 kgt/cm^2 B AISI 1020 SIGXC Compressive strength (X dir) 7380.967 kgt/cm^2 B AISI 304 SIGYLD Yield stress 6326.543 kgt/cm^2 B Stainless : AIPX Derlift of thermal expans 1.3e-0057 /Centigrade KX Thermal conductivity KX D1195/D27 /Lift ms .21 .	Value Units 🔻 Temp. Ci 🔺	Valu	Description	Property	🖃 🥨 Steel 🔺
B Cast Aloy NLXY Poisson's ratio in XY dir 0.28 B Cast Stair GXY Shear modulus in XY dir 0.28 B Cast Stair GXY Shear modulus in XY dir 0.0577.51 k.gt/cm^2 DENS Mass Density 0.0077 k.gt/cm^2 516XT Tensile strength [X dir] 7380.967 k.gt/cm^2 B AISI 1020 SIGXC Compressive strength [X dir] 7380.967 k.gt/cm^2 B AISI 102 SIGXC Compressive strength [X dir] 6326.437 k.gt/cm^2 B AISI 102 SIGYLD Yield stress 6326.437 k.gt/cm^2 B Stainles ! ALPX Coeff. of thermal expans 1.3e-005 /// Centigade		i 2141404 kgf/cm^2	di 214	Elasticity modulus (1:	EΧ	Alloy Stee
□B Cast Stair GXY Shear modulus in XY dir 805575.81 kg/cm ² 2 □B Plain Cart DENS Mass Density 0.0077 kg/cm ² 3 □B Stair Cart SIGXT Tensile strength (X dir) 7380.957 kg/cm ² 2 □B AISI 1020 SIGXC Compressive strength (X dir) Kg/cm ² 2 □B AISI 304 SIGYLD Yield stress 6326.5437 kg/cm ² 2 □B Stainless : - ALFX Coeff. of thermal expans 1.8-005 //Centigade	B Cast Stair GXY Shear modulus in XY dir 805575.81 kgf/cm^2 B Plain Catt_ DENS Mass Density 0.0077 kg/cm^2 B Cast Catb SIGXT Tensile strength (X dir) 7380.967 kg/cm^2 B AISI 1020 SIGXC Compressive strength (X dir) 7380.967 kg/cm^2 B AISI 304 SIGYLD Yield stress 6326.5437 kg/cm^2 B Stainless I ALPX Coeff. of thermal expans 1.3e-005 /Centigrade KX Thermal conductivitor KX D11950287 Cal/cm s D ,	0.28	lir 0.28	Poisson's ratio in XY	NUXY	- 🗈 Cast Alloy
□B Plain Cart DENS Mass Density 0.0077 kg/cm^3 □B Cast Carb SIGXT Tensile strength (X dir) 7380.967 kg//cm^2 □B AISI 1020 SIGXC Compressive strength (X dir) 7380.967 kg//cm^2 □B AISI 304 SIGYLD Yield stress 6326.5437 kg//cm^2 □B Stainless : ▼ ALPX Coeff. of thermal expans 1.3e-005 //Centigrade		805575.81 kgf/cm^2	dir 805	Shear modulus in XY	GXY	🗠 🗈 Cast Stair
	B Cast Carb SIGXT Tensile strength (× dir) 7380.967 kgf/cm^2 B AISI 1020 SIGXC Compressive strength (× dir) 7380.967 kgf/cm^2 B AISI 1020 SIGXC Compressive strength (× dir) 6326.543 kgf/cm^2 B Stainless (↓ ALPX Coeff: of thermal expans 1.3e-005 //Centigrade KX Thermal conductivity VX D1195/D287 Cal/cm SD ,	0.0077 kg/cm^3	0.00	Mass Density	DENS	🖳 🗈 Plain Cart
	Image: Constraint of the state of	7380.967 kgf/cm^2	r) 738	Tensile strength (X)	SIGXT	🗈 Cast Carb
B AISI 304 SIGYLD Yield stress 6326,5437 kgf/cm^2 B Stainless ! ALPX Coeff. of thermal expans 1.3e-005 /Centigrade		kgf/cm^2	X	Compressive strengt	SIGXC	🗈 AISI 1020
Stainless ALPX Coeff. of thermal expans 1.3e-005 /Centigrade	ALPX Coeff. of thermal expans 1.3e-005 /Centigrade	6326.5437 kgf/cm^2	632	Yield stress	SIGYLD	🗈 AISI 304
	KX Thermal conductivity IX: 0.11950287 Cal/(cm x C)	1.3e-005 /Centigrade	ns 1.3e	Coeff. of thermal exp	ALPX	🗈 Stainless ! 🖵
KX Thermal conductivity IX: 0.11950287 Cal/(cm s C)		0 11950287 Cal/fom s Cl	X- N 11	Thermal conductivity	KX	
		▶			•	

Fig.3. The library of materials, provided with the program

category containing a set of materials with predefined proprieties. Can be made usual operations: to create categories, to

□ introduce new materials, to modify the existing ones, to rename, to erase, etc.; from the library of materials was selected a steel having the modulus of elasticity $E = 2141404 \text{ Kgf/cm}^2$ and the value of the Poisson's coefficient = 0,28;

□ *defining loadings* – the applicable types of loadings are:

- "<u>Force</u>" allows to apply a total force on one or many selected entities: vertex, edge or face;
- "Torque" allows to apply a torsional moment on one or many selected faces;
- "<u>Moment</u>" allows to apply a moment on one or many selected entities: vertex, edge or face;
- "<u>Uniform pressure</u>" allows to apply a distributed pressure on the selected face.

The applying direction of the loading can be normal or directional, by the specification of the components value on the 3 axes, and for every type of loading can be selected the measure unit.

The piece is embed on cylindrical surfaces, and over the circular disc is applied a uniform distributed pressure, having the value of 1×10^6 N/m², fig. 4;

Fig.4. The calculation model of the vane

□ model discretisation – COSMOS/DesignSTAR offers the possibility to automatic generation of the discretisation, initially proposing a global digital quantity of discretisation, calculated in function of model volume, its surface and information of geometrical type; the discretisation size (number of nods and elements) are depending of the model geometry and dimensions, of the selected quality: caddish - "Draff" or fine - "High", tolerations, the imposed discretisation type and specifications referring to contact. Therewith, DesignSTAR permits local specification by the user of the element sizes, having different value from the global one, at the side of the vertexes, edges and faces, for a precise discretisation of the delicate zones from geometrical point of view "User-defined Mesh Control".

The discretisation with elements of "solid" type, offers two alternatives:

• "<u>draft quality mesh</u>" – by solid linear tetrahedral elements generation, defined by 4 nods connected by 6 linear edges;

• "<u>high quality mesh</u>" – by solid parabolic tetrahedral elements generation, defined by 4 nods, 6 median semi nods, respective 6 edges.

• The discretisation control offers 3 possibilities:

• "<u>Automatic Transition</u>" – impose appliance of details, holes, geometrical sections of small dimension compared with the whole model discretisation; it is recommended to deactivate this option to large models discretisation, having a lot of

small geometrical dimensions portions, to avoid the generation of a useless number of finite elements;

• "<u>User Defined Controls</u>" – when this option is activated, the program applies the discretisation specifications over all explicit by the user defined zones (vertex, edges, faces), others than the ones resulted from the global discretisation applied in the left-over of the model.

• "<u>Smooth Surface</u>" – activating this option, the program refines discretisation, in reallocating frontier nods, to improve the initial discretisation quality.

For the analyzed model was generated 10205 finite elements with 20366 nods,

Fig.5. The discretization for the analyzed model

□ *analyze calculus* – for the anterior defined conditions and on a calculator having an updated configuration, the calculus did not presented any problems from the consumed time point of view;

visualizing results – COSMOS/Design Star offers strong instruments for the results visualization on graphical form (color maps and diagrams) respective numerical value: tensions and stresses, displacements, deformations, relative verification having imposed admissibility criterions

3. RESULTS

The color map corresponding to deformations is presented in fig. 6. The maximal resultant displacement is 3.441 mm, and the displacement zone is bigger than 2.7 mm, being presented in fig. 7, where we can observe the displacement asymmetry generated by the asymmetrical disposal of the cylinders.

bigger than 2,7 mm

The displacement variation in the long of the piece is numerical presented in fig. 8, and graphical in fig. 9. The maximal displacement zone is positioned on the central portion of the disc, opposed to the cylinders, fig. 10.

Fig.8. The displacement variation in long of the vane

The corresponding color map to the Von Mises tension is presented in fig. 11; the tension variation in the long of the piece is presented numerical in fig. 11, and graphical in fig. 12. The maximal tension is 400 Mpa.

Fig.10. Zone with displacements bigger than 3.2 mm

Fig 12. The graphical tension variation

Fig. 13, a,b,c presents tension zone having a bigger value than 135 MPa, 200 MPa respective 250 MPa, resulting the substantial reduce of the zone with tension increment and their localization to the superior part of the lateral ribs. The maximal value for the tension of 400 MPa generated by the program can be considered as a local value, applied on a very reduced zone, similar to the effect of a local concentrator.

The calculus was relapsed for the same piece, on which was modified the thickness of the two central vertical ribs, from 40 mm to 50 mm. In these conditions, the maximal displacement was reduced to 2.882 mm, and the Von Mises tension to 354 MPa.

Fig.13. The maximal value for the tension: a) Zone with tensions bigger than 135 MPa; b) Zone with tensions bigger than 200 MPa; c)Zone with tensions bigger than 250 MPa

4. CONCLUSIONS

The paper exemplifies the obtained results by the method of finite element over a vane, using both programs Microstation Modeler and COSMOS/Design Star. The analyze results are presented graphical and numerical, with the prominence of the sensitive zone, from deformations and tension point of view. Also analyze a variant of the vane, generated by the increasing the thickness of the two central ribs.

The modeling of piece behavior by the method of finite element offers digital and qualitatively results, which allow the knowledge of mechanical behavior of the piece and the analyze of the possible variants, offering in this way to the engineer a projecting instrument especially efficient.

BIBLIOGRAPHY

- 1. MĂNESCU, T. Analiza deformațiilor ce apar la obturatoare de tip vană fluture biplană, Analele Universității Eftimie Murgu Reşița, 2002.
- 2. BOLEANȚU, L., MĂNESCU, T. Aspecte referitoare la calculul tensiunilor și deformațiilor clapetei vană fluture biplane, în regim static de acționare, Construcția de Mașini, Nr. 3, București, 1981.
- 3. NEDELCU, D. Cosmos/Design Star, analiza funcțională a structurilor, Rev. T & T- Tehnică și Tehnologie, București, ISSN 1453 8423, Nr. 3/2002.
- 4. NEDELCU D. *Proiectarea asistata de calculator prin Microstation*, Editura EUROSTAMPA, Aprilie, Timisoara, 2001, ISBN 973-8244-03-X