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ABSTRACT 

 This paper deals with the distribution of temperature in an ingot heated inside a pit 
furnace. In order to determine the non-stationary thermal field we resorted to a linear 
discreeting of the thermo-physical parameters along time intervals. For each interval we 
considered a polynomial interpretation of temperature, imposing besides the connection 
conditions we also considered the checking of the Galerkin integral. 
 The analytical results we obtained were compared to the experimental 
measurements given in the reference literature, which lead to satisfactory approximations. 
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1. INTRODUCTION 
 

The cracking of alloy steel ingots during heating up, is caused by the thermal stress, 
whose value reaches the temperature limit before the core temperature exceeds the elasticity 
limit (500 – 550 oC). The choice of the proper hot working technology for these steel grades is 
first dependant on the heating conditions, decided upon according to their technological 
characteristics. The choice of the optimal heating pattern is most often done according to 
practical experience.   

This paper is meant to introduce an analytical method enabling a most accurate 
estimation of the temperature field decided upon for the heating up of these ingots, thereby 
allowing considerations on the magnitude and distribution of thermal stress resulting from the 
heating process.   

The method we suggest is a direct one and represents a powerful instrument for the study 
of linear and non-linear problems in mechanics and physics. As a result of this direct method we 
obtained an approximate analytical solution to the equation under consideration.  In many 
cases, practical engineering considers such an analytical solution, even if approximate, 
preferable to the “exact”, numeric one. Finding a solution to the equation of thermal conduction 
is usually associated to major difficulties, particularly because of its non-linearity (material 
properties that are dependent on temperature) and also because of the limit conditions related 
to the radiation phenomenon. In this study we focused on the non-linear problems caused by 
the temperature variation of the material properties.      
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The method we have introduced consists in sequentially turning thermal coefficients 
linear, in order to simplify the main equation. As a result of this approach, instead of having one 
non-linear differential equation with partial derivatives, we have an equivalent set of linear 
differential equations. In the case under consideration, this method gives satisfactory results for 
a wide range of temperatures  

The authors consider that the problems related to the radiation conditions still persist (and 
they will be a topic of high interest for many researches) but, by this approach at least, and for 
certain temperature ranges, the results are acceptable.    

The temperature values obtained by means of the method we introduced will be 
compared to the magnitudes obtained experimentally in Romania by Prof. Ilca Ioan Dr. es Sc. 
[1]. 
  

2. THE MATHEMATICAL MODEL 
 
In order to derive the mathematical method appropriate to the ingot-heating phenomenon 

we have to take a few hypotheses into consideration.  From the physical point of view, we are 
dealing with a rigid, isotropic body (the ingot), inside which a non-stationary phenomenon of 
thermal conduction takes place.  From the geometrical standpoint, the ingot can be assimilated 
to a parallelepiped with a square basis and an infinite height.  

Because of the cross-sectional symmetry and of the relative position of the ingot inside the 
pit-furnace (see fig. 1), the behavior of the system under consideration can be described by 
means of a parabolic differential equation simulating a mono-directional conduction 
phenomenon, and also with the help of an initial limit (frontier) condition given below [2]:  
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here: T = T(y,t) is the temperature distribution in the ingot cross section, dependant on  width y 

 a solution to equation (1), of the form: 
 

                                                                                                    (5) 
 

Coefficients b(t) and c(t) are to be determined by setting such conditions so as solution 
(5) observe equations  (3) and (4): 

       

       

(4) 
 

w
and time t. The ingot lateral is marked L; ρ is the specific mass, cp is the specific heat, and λ 
represents the thermal conductivity of the steel under consideration, all of them depending on 
temperature. Moreover, ε is the emission factor of the ingot surface and σ0 = 5,67. 10-8 W/(m2.K4) 
is the radiation constant of the perfectly black body, or the Stefan - Boltzmann constant. The 
initial temperature of the ingot is T0=293K, and the temperature inside the pit furnace is marked 
Tf(t). Finally, α [W/(m2.K)] represents the mean coefficient of convection heat transfer at the 
surface of the ingot.  

We looked for
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Fig.1. Ingot positioning inside the pit furnace   
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 In order to facilitate the solving of the problem, we resorted to a simplifying hypothesis, 

hich consists in considering the thermo-physical parameters as constant along certain time 
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w
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a(t) we impose the checking condition for Galerkin integral: 
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1(t) and q2(t) we considered a variation of the 
temperature in the main pit furnace with respect to time, Tf(t), as given in figure 2, and the 
variations T(0,t) respectively T(L,t) were considered linear variations. 
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Fig.2. The time variation of temperature inside the pit furnace 
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 As we have already mentioned, in order that hypothesis: λ = ct., cp = ct., and ρ = ct. (along 
intervals) be as plausible as possible, we have to consider the t
shorter intervals.  These intervals have been chosen so as the modifications of the thermo-

ime interval divided into several 

physical property values along each should be insignificant. As a result of such hypotheses, the 
integration constant of  (19) shall be modified for each interval. Anyway, it is obvious that the 
temperature (of a point on the ingot cross-section) at the end of one time interval is identical to 
the temperature at the beginning of the next time interval: 
   )tn,y(T)tn,y(T n1n Δ=Δ+                                                                                                              (20) 
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where n = 0,1,2… represents the number of the time interval, and Δt is the width of this time 
interval. Combining (19) and (20) we obtain the formula for the determination of the temperature 
function along the interval under consideration (n+1): 
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 The total heating time is 10 hours. This interval has been divided into 10 equal parts, so 
that Δt = 1 hour. The real variations of thermal conductivity λ and specific heat cp are given in 
figures 3 respectively 4. The value of the specific mass is considered to be constant along the 
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entire heating span and equal to ρ=7800Kg/m3. 
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         Fig.3. The real variation of thermal                Fig.4.  The real variation of specific heat   
     conductivity with respect to temperature                       with respect to temperature 
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0) and inside it (y = L/2). These values are compared to the 

e by experimental measurements, at industrial scale. 
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or that differs according to the time interval of the heating up.  This 

       3. RESULTS 
 
 We hereinafter give the value
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   4. CONCLUSIONS 

  
 analytically determined temperature values on the ingot surfThe

experimental ones by an err
can be noticed in figure 5. 

The reason these differences appear is determined by the way in which the heat transfer 
conditions have been determined, i.e. by convection and radiation, between the burned gases 
and the surface of the ingot. The choice of a global heat exchange coefficient α, with a constant 
average value all along the heating time of the ingot surface, makes the model under 
consideration be closer to reality for the temperature range corresponding to a mean value of α, 
i.e. in the medial zone of the total heating interval (400 – 600 0C), as can be noticed in figure 5. 

The analytically obtained values of temperatures in the ingot core differ relatively much 
from the experimental ones, particularly in the first part of the heating time. This can be noticed 
in figure 6. 
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Fig.5. Temperatures of points belonging to the ingot cross-section 

for which y = 0 (outer surface) 
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Fig.6. Temperatures of points belonging to the ingot cross-section 
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