

1 2

EDUCATIONAL SOFTWARE MEANT FOR THE
IMPLEMENTATION AND EVALUATION OF THE

ASYNCHRONOUS TECHNIQUES OF THE ABT FAMILY,
CREATED IN NETLOGO

1 MUSCALAGIU Ionel, MUSCALAGIU Diana,
PĂNOIU Manuela, IORDAN Anca

1 THE UNIVERSITY „POLITEHNICA” DIN TIMISOARA,

THE FACULTY OF ENGINEERING OF HUNEDOARA

ABSTRACT:
The wide spreading of computer networks and of the Internet will result in the

necessity of developing distributed software, which is supposed to work under these
media, and to turn into account the advantages of a distributed and concurrent medium.
Writing distributed applications is a lot more difficult than classical programming as it
implies handling several different concepts. The implementation of such techniques can
be done in any programming language allowing a distributed programming, such as Java,
by means of RMI. Nevertheless, for the study of such techniques, for the analysis of their
completeness and for their evaluation, it is easier and more efficient to implement the
techniques under certain distributed media, which offer various facilities, such as
NetLogo.

The aim of this article is to introduce an as general as possible model of
implementation and evaluation for the asynchronous techniques of the ABT family. This
model can be used in creating some educational software to be used in the study of
asynchronous techniques with agents.

Keywords

Artificial intelligence, distributed programming, constraints, agents.

1. INTRODUCTION

The adjustment of the software technologies to the distributed

equipment represents an important challenge for the next years. The wide
spreading of computer networks and of the Internet will result in the
necessity of developing distributed software, which is supposed to work
under these media, and to turn into account the advantages of a
distributed and concurrent medium. Writing distributed applications is a
lot more difficult than classical programming as it implies handling several
different concepts.

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA - 2004 TOME II. Fascicole 2

 194

The constraint programming is a model of the software
technologies, used to describe and solve large classes of problems as, for
instance, searching problems, combinatorial problems, planning problems,
etc. A large variety of problems in the A.I field and other domains specific
to computer sciences could be regarded as a special case of constraint
programming. Lately, the A.I community showed a greater interest
towards the distributed problems that are solvable through modeling by
constraints and agents. The idea of sharing various parts of the problem
between agents that act independently and that collaborate between them
using messages, in the prospective of gaining the solution, proved itself
useful, as it conducted to obtaining a new modeling type called Distributed
Constraint Satisfaction Problem(DCSP) [3,4].

There are more complete or incomplete asynchronous searching
techniques available, for the DCSP modeling, which allow the solving of a
problem in this constraints network. These techniques are remarked
because of the diversity of applied ideas concerning the agents’ work in an
asynchronous and competitive way, but they also assure the
completeness or a better efficiency, too.

The implementation of such techniques can be done in any
programming language allowing a distributed programming, such as Java,
by means of RMI. Nevertheless, for the study of such techniques, for the
analysis of their completeness and for their evaluation, it is easier and
more efficient to implement the techniques under certain distributed
media, which offer various facilities, such as NetLogo [5,6].

The aim of this article is to introduce an as general as possible model
of implementation and evaluation for the asynchronous techniques of the
ABT family. This model can be used in creating some educational software
to be used in the study of asynchronous techniques with agents. For this
purpose we chose the NetLogo medium [5,6], which is a programmable
modeling medium that can be used for the simulation of natural or social
phenomena.

We will see the way one can simulate agents, how constraints can be
implemented, how various measurement units for asynchronous
techniques in the ABT family can be implemented. Unfortunately, there is
no distributed medium dedicated to modeling with distributed constraints,
all the existent media are general ones, with more general targets. The
implementation of agents and constraints implies a certain calculation
effort, bigger or smaller, according to the performances of the given
medium. The use of this support for educational software can ease the
actual implementation of asynchronous techniques in ABT family, and why
not, of the other asynchronous techniques.

2. THE IMPLEMENTATION OF APPLICATIONS WITH AGENTS IN
NETLOGO.

We are going to introduce the way of implementing, using as a support

Yokoo’s ABT algorithm, applied to the problem of the n queens. Starting

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA - 2004 TOME II. Fascicole 2

 195

from this framework, one can implement build any educational software
for other derivate techniques, used in solving certain problem.

2.1. The Implementation Of the ABT Family Algorithms In

NetLogo.

We are going to introduce the way of implementing the ABT family

algorithms in NetLogo, using the example of the problem with n queens.
There are two aspects we will analyze. The first refers to the way in which
we will program the asynchronous technique and the way of representing
in NetLogo. This is going to be approached using in general objects of the
turtle type. The second aspect is more closely connected to the problem
to be solved and it refers to the way of interacting with the user, to the
desktop. As to this aspect, NetLogo offers objects of the patch type, as
well as various graphical controls. In any case, the patch type objects will
allow us to simulate the surface of the application.

First, the agents will be represented by calling the breed type objects
(as we know, they are turtle type variants). For our example, we will
create the agents by using the breeds [queens]) construction. This will
allow programming each DCSP agent according to the ABT algorithm.
More exactly, we will implement the three routines of the ABT algorithm,
using the NetLogo-type algorithm. These routines will be applied for each
asynchronous agent.

The initial NetLogo code is:
breeds [queens]
globals [no-more-messages tmp]
breeds [queens]
;rows, and cols go from [0..num-queens-1]
;message-queue contains the incoming messages. We take new ones out from the
head.
;col is the position of the queen on it's row.
;current-view is a list indexed by queen number [col0 col1 col2...] col = -1if
unknown.
;nogoods is a list of inconsistent positions [0 1 1 0 ...] where 0 is good and 1 is
no-good.
;messages-recieved is the number of messages this queen has received.
queens-own [message-queue col current-view nogoods messages-received_ok
messages-received_nogood]
One can notice the way the agents called queens are built. For each

agent we declare the variables and the structures of property data, which
will be global variables for the agents. Note a queue-type structure
existing for each agent. This queue (called message-queue) will contain all
the ok and nogood type messages received by the respective agent. These
queues have a very important role in detecting the algorithm end. As we
know, the ABT algorithm (as most asynchronous algorithms) ends at the
moment a pause appears in message sending. At the moment all the
queues are empty, we can consider that the ABT algorithm is over.

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA - 2004 TOME II. Fascicole 2

 196

As to the first aspect (the algorithm one) it is recommendable to
define a procedure for initializing each agent, like in the sequence given
below, used to initialize the ABT algorithm:

to setup-queens
;it creates agents
 create-custom-queens num-queens [
 set col 0 ;initial value is 0 for all.
 setxy (col - screen-edge-x) (screen-edge-y - who)
 …]
end
As to the interface aspect, we will use for the graphical representation

of the queen positions a patch for each. It is recommendable to create a
procedure of initializing the display surface for the agent values.
The two initializing procedures will be attached (by means of a set up
procedure) to an application start button, as in the following sequence:

to setup
 ca
 setup-patches
 setup-queens
 ask queens [initialize]
end

In order to start running the algorithm we can build a go or update

type button to which we attach a NetLogo procedure, representing some
kind of “main program”, a command center. Within such a procedure,
which is supposed to run continuously (until the queues run empty of
messages), the message queue is checked for each agent (in order to
detect a pause in the sending of the messages). For standardizing
reasons, we defined another procedure, called handle-message, in
charge with handling the messages that are specific to the ABT algorithm.
For another technique (which, as known, works with other types of
messages) one can adapt this procedure in order to handle such
messages. We introduce hereinafter the two procedures, maybe the most
important ones from the standpoint of the way of implementing in
NetLogo the asynchronous way of working with messages, which is
characteristic for asynchronous techniques:

to update
 set no-more-messages true
 ask queens [
 if (not empty? message-queue)[
 set no-more-messages false]]
 if (no-more-messages) [stop]
 ask queens [handle-message]
 ask queens [
 create-temporary-plot-pen "q" + who
 plot messages-received_nogood
 plot messages-received_ok]
end

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA - 2004 TOME II. Fascicole 2

 197

One can notice the call “ask queens …”, which allows the asynchronous
performing of the next calculations for each agent. The message handling
procedure is:

 to handle-message
 locals [msg xj dj]
 if (empty? message-queue) [stop]
 set msg retrieve-message
 if (first msg = "ok")[

 set messages-received_ok messages-received_ok + 1
 ok xj dj]
 if (first msg = "nogood")[
 nogood item 1 msg
 set messages-received_nogood messages-received_nogood + 1]
end

The main target is to take a message from the message queue (let’s

not forget that this is a FIFO-type of queue), identify the type of message
and then call the procedure of processing the respective message.
 The two processing procedures for the ok or nogood messages can be
implemented according to the implemented algorithm. For instance, for
the ABT algorithm we mentioned, the two procedures will look like this:

to ok [Qj Vj]
 set current-view replace-item Qj current-view Vj
 check-agent-view
end

to nogood [beef]
…
end

Another important thing that can be achieved in NetLogo is related

to the evaluation of the asynchronous algorithms [1,2]. We are interested
to know how we can count the costs of the implemented techniques.
NetLogo allows the counting of the various types of messages that arise in
the respective technique. For the algorithms in the ABT family, it is
interesting to count the message flow such as the number of ok and
nogood messages. This can be done using some global variable, attached
to the agents. It is achievable for the model we are introducing, by
means of a propriety variable for each agent, variable that has to be
incremented at the moment one type of message is generated and sent.
For our model, this can be done within the handle-message routine.
Moreover, NetLogo also allows the graphic display of the variation of the
number of messages for each agent, which is very useful in analyzing the
influence of the order of agents on the message flow or on the behavior of
the agents with respect to the unit of measurement. This can be
achieved using a plot type graphic object, within which one can draw, for
each agent, the number of values handled at each step. For instance, in
the figure 1. given below, it is shown how the number of nogood
messages per agent is counted for each cycle:

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA - 2004 TOME II. Fascicole 2

Figure 1. For the ABT and AWCS algorithm the evolution of nogood message flow for the

problem of the n queens (n=8)

2.2. Model Of Implementation And Evaluation For the
Asynchronous Techniques, to Be Applied In Solving A DCSP
Problem.

In short, starting from the previous analysis and taking into account
the particularities of the various asynchronous techniques, we give
hereinafter a diagram of asynchronous algorithm implementation for
NetLogo, diagram that can be used in implementing some educational
software for the study of asynchronous techniques.
 The first stage: Identifying the objects of DCSP application

 The working surface

of DCSP application
DCSP Agents

198

The second stage: The messages manipulation.

Breeds type
Turtles objects Patches type

objects

Messages FIFO messages
channel

NetLogo indexed
lists

NetLogo list of
Message-queue

tail type

Ok xj dj Nogood
[n1,n2…],
ni ∈{0,1}

View
[v1,v2…],

vi ∈Di

Set msg first message-queue
Set message-queue butfirst
messa

Lput msg message-queue

ge-queue

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA - 2004 TOME II. Fascicole 2

The third stage: Initializing the application and each agent. The main
program of DCSP application.

 199

The initialization
of DCSP

application

Button type
graphical objects

NetLogo code frame

Agents
initialization

NetLogo
procedure

NetLogo code frame

Proceeding with the application applies the introduction of a graphic
button type object and setting the forever property. This way the code
that will be attached in the form of a NetLogo procedure (that applies to
each agent) in continuous action, until the emptying of messages tails and
encountering the stop command (which, in NetLogo, stops the execution
of an agent).

Performing the DCSP
application

Button type graphic object for
which it has been set the forever

property

NetLogo code frame

 The fourth stage:The countdown of the asynchronous technique costs.
This thing could be done by using certain variables (globals eventually)
attached to agents.

Measuring unit

 Variable attached to

the agent

Increments the variable at the moment in which the
measuring unit appears

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA - 2004 TOME II. Fascicole 2

 200

3. CONCLUSIONS
The NetLogo Medium is good for building software packages

(simulators) meant for testing and evaluating the asynchronous
techniques. The Medium and the language backing it have enough
resources to implement any DCSP technique, for any problem that has to
be solved.

The model we suggested supposed the identification of the NetLogo
objects needed for the implementation of the asynchronous techniques
(agents, messages, message queues, agent order), as well as of the user
interface. Also, we tried to count the various units of measurement in
order to estimate and assess the performances of the asynchronous
techniques. We consider this to be the first model for the NetLogo
techniques, allowing evaluation according to several evaluation criteria.
At the same time, the model enables the study of the agent behavior for
various techniques, and the study of the costs for each agent.

As a general conclusion, we think that the model we achieved can
be used for the study and analysis of the asynchronous techniques, the
model allowing their complete evaluation.

4. BIBLIOGRAPHY

[1] MUSCALAGIU Ionel: A comparative study on the efficiency of

Asynchronous Search Techniques in the DISTRIBUTED CONSTRAINT
SATISFACTION PROBLEM. International Conference on Automation,
Quality and Testings, Robotics , 2004, Cluj-Napoca.

[2] MUSCALAGIU Ionel, PANOIU M., OSACI M. The analisys of the
evaluating criteria in the asynchronous techniques efficiency.
Peridodica Politechnica, Transactions on Automatic Control and
Computer Science, Vol.49 (63), 2004.

[3] YOKOO M., E.H. DURFEE, T. ISHIDA, K. KUWABARA (1998): The
distributed constraint satisfaction problem: formalization and
algorithms. IEEE Transactions on Knowledge and Data Engineering
10 (5).

[4] YOKOO Makoto (2001): Distributed Constraint Satisfaction-
Foundation of Cooperation in Multi-agent Systems. Springer.

[5] http://ccl.northwestern.edu/netlogo/docs/.
[6] WILENSKY, U. NetLogo itself: NetLogo. http://ccl.northwestern.edu/

netlogo/. Center for Connected Learning and Computer-Based
Modeling, Northwestern University. Evanston, IL, 1999.

http://ccl.northwestern.edu/netlogo/docs/
http://ccl.northwestern.edu/%20netlogo/
http://ccl.northwestern.edu/%20netlogo/

	1 THE UNIVERSITY „POLITEHNICA” DIN TIMISOARA,
	THE FACULTY OF ENGINEERING OF HUNEDOARA
	Keywords

	The constraint programming is a model of the software technologies, used to describe and solve large classes of problems as, for instance, searching problems, combinatorial problems, planning problems, etc. A large variety of problems in the A.I field and other domains specific to computer sciences could be regarded as a special case of constraint programming. Lately, the A.I community showed a greater interest towards the distributed problems that are solvable through modeling by constraints and agents. The idea of sharing various parts of the problem between agents that act independently and that collaborate between them using messages, in the prospective of gaining the solution, proved itself useful, as it conducted to obtaining a new modeling type called Distributed Constraint Satisfaction Problem(DCSP) [3,4].
	There are more complete or incomplete asynchronous searching techniques available, for the DCSP modeling, which allow the solving of a problem in this constraints network. These techniques are remarked because of the diversity of applied ideas concerning the agents’ work in an asynchronous and competitive way, but they also assure the completeness or a better efficiency, too.
	 The fourth stage:The countdown of the asynchronous technique costs.
	As a general conclusion, we think that the model we achieved can be used for the study and analysis of the asynchronous techniques, the model allowing their complete evaluation.

