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       The development of secondary flows is a salient feature of a fluid flow 
in the presence of rotational force fields. Examples of rotational forces are 
the shear force in a viscous fluid, the electromagnetic force in an 
electrically conducting fluid, the pressure force in a stratified fluid, and the 
Coriolis force experienced by a flow in rotation. When a secondary flow 
occurs, the perturbated fluid motion has a magnitude of the same order as 
that of the primary flow. Therefore, the secondary flow is a nonlinear 
phenomenon, which is contained only in the solution of the governing 
equations whose nonlinear terms are retained. 
 When an electric current is passed through a conducting fluid, a 
magnetic field is generated. In the laboratory under a steady state, even if 
the fluid medium is in motion, the magnetic field H  and the current 
density J  are governed approximately by the following equations, 

HJ ×∇=  
0HH =××∇  

The governing equations cannot be independent of the fluid velocity 
V  in the problems of astronomical scales. In the presence of a current and 
a magnetic field, the conducting fluid is subject to an electromagnetic 
body force per unit volume of the form 

HJf mµ×=  

where mµ  is the magnetic permeability of the fluid medium. Unless the 

current is uniform or is in some simple geometry, such as a two-
dimensional configuration, this body force is in general rotational; that is, 

0f ≠×∇ . This rotational force causes many interesting phenomena in a 
conducting flow that are not commonly found in the ordinary fluid flows. 
 The equation of motion for an incompressible conducting fluid is 
obtained by simply adding the above electromagnetic force term, to the 
right-hand side of the Navier-Stokes equation. Rewriting the equation with  

ζ=×∇ V  
being the vorticity, we have 

HJ)V
2
1p

(V
t
V m2 ×

ρ
µ

+ζ×∇ν−+
ρ

−∇=ζ×−
∂
∂  

in which ρµ=ν  is the kinematic viscosity. Taking the curl of this vector 
equation and substituting J  from its above definition yields 
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]H)H[()(
t

m ××∇×∇
ρ
µ

+ζ×∇×∇ν−=ζ×∇×∇−
∂
ζ∂  

This equation describes the transportation and product of vorticity in 
a conducting viscous incompressible fluid. The continuity equation for such 
a fluid remains the same form as that for nonconducting fluid. 

0V =⋅∇  
The procedure for solving a magnetohydrodynamic problem in the 

laboratory scale is outlined as follows. The steady electromagnetic fields 
are first determined from the previous definitions utilizing their 
appropriate boundary conditions specified by the problem. Upon 
substitution of H into the last term of Navier-Stokes equation, the effect of 
the electromagnetic force is computed as a known function of spatial 
coordinates. The solution V  to this equation, satisfying the specified fluid 
boundary conditions, is then sought under the constraint imposed by the 
equation of continuity. 

As a specific example let us compute the motion of a conducting fluid 
flowing through a circular tube of radius 0r  in the presence of a 
converging-diverging current flow. Such a current distribution is obtained 
by applying potential differences across a small screen electrode of radius 

1r  and two large screen electrodes covering the ends of the nonconducting 
tube. The electrodes, through which the fluid can freely move, are 
separated by the same distance 0z . In the presence of a conducting fluid, 
electric current will flow along the tube to form a constriction at the 
central electrode. When it interacts with the associated magnetic field in 
the azimuthal direction, this current produces a rotational force field that 
will modify the originally uniform motion of the fluid. In addition, the 
electromagnetic force, HJ mµ× , has a component pointing toward the tube 
axis that causes a “pinch effect” to build up the pressure near the axis. An 
analysis of the magnetohydrostatic pinch due to the uniform current can 
be found in Section 6.13 of Hughes and Young [1]. In our problem the 
pinch is nonuniform; it has a strong effect in the neighborhood of the 
central electrode. Thus the fluid is moving through a pressure hump 
created electromagnetically. The situation is somewhat analogous to the 
situation in which plasma is blowing toward an electric arc.  
 Because of the axisymmetric geometry of the flow, the stream 
function can again be used, so that the continuity equation is satisfied and 
the axial and radial velocity components are expressed as 

zr
1

u,
rr

1
u rz ∂

ψ∂
−=

∂
ψ∂

=  

The magnetic field has only one component, θh , in the azimuthally 
direction if the current flow is axisymmetric. 
 Let 0

2
0urπ  and 0

2
0 Jrπ  to be the volume flow rate and the total current, 

respectively, passing through the tube. By using 0r , 0u  and 0J  as the 
reference quantities, the following dimensionless variables can be 
introduced. 
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In terms of these new variables, the governing equations for an 
axisymmetric configuration become  
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∂
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The two dimensionless parameters in the last equation are 

)u
2
1

Jr(C 2
0

2
0

2
0m ρµ≡ , the magnetic pressure number, and )ruRe( 00 ν≡ , the 

Reynolds number of the flow. 
 Simple boundary conditions are chosen for our analysis. For example, 
instead of spending time on computing the growth of the boundary layer 
along the tube wall, which is a phenomenon not essential to the present 
problem, a slip boundary condition is assumed there that states that the 
wall coincides with the outermost streamline and that along this particular 
streamline vorticity vanishes. The boundary conditions for the 
electromagnetic field are that the current must be tangent to the 
nonconducting tube wall and the radial component of the current flow 
vanishes at both the end and central electrodes.  
 Since the electromagnetic field is symmetric about the central 
electrode at 0z = , we need only to find the solution in the region 0zz0 ≤≤−  
to the left of the central electrode. The mirror image of this solution gives 
that in the region to the right. The boundary conditions in terms of RH are 
listed below. 
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 When there is a net flow through the tube, the flow pattern, unlike 
the electromagnetic field, is not symmetric about the central electrode, so 
the whole region between the two electrodes must be considered. By 
assuming that the flow is purely axial when passing through the end 
screen electrodes, the fluid boundary conditions are as follows, 

0:
r
z

Z
r
z

0R
0

0

0

0 =Ω=Ψ≤≤−=  

0,
2
1

:
r
z

Z
r
z

1R
0

0

0

0 =Ω=Ψ≤≤−=  

0
ZZ

:
r
z

Zand1R0
0

0 =
∂
Ω∂

=
∂
Ψ∂

±=<<  

 The system of equations, including the nonlinear equation (**), is to 
be solved numerically for flows whose Reynolds numbers are not small. 
These problems generally cannot be solved analytically by using 
linearization techniques. The solution will be obtained at a finite number of 
grid points having coordinates R)1j(R,rzZ)2i(Z j00i ∆−=−∆−=  and at discrete 

time steps separated by constant intervals T∆ . In the present work Z∆  
and R∆  are chosen to have the same value h; this is not, however, 
generally necessary. 
 To replace the governing differential equations by finite-difference 
equations, evaluated at )R,Z( ii , we approximate all linear spatial 
derivatives by using the central-difference formulas. Thus, the first four 
equations (*) become 

])RH()RH()RH()RH[(
4
1

)RH( 1j,ij1j,ijj,1ij,1ij,i −+−+ β+α++=  

j

1j,i1j,i
j,i hR2

U −+ Ψ−Ψ
=  

 

j

j,1ij,1i
j,i hR2

V −+ Ψ−Ψ
=  

)Rh(
4
1 '

j,ij
2'

1j,ij
'

1j,ij
'

j,1i
'

j,1i
'
j,i Ω+Ψβ+Ψα+Ψ+Ψ=Ψ −+−+  

where 

1j
5.1j

R2
h

1
j

j −
−

=−=α  

1j
5.0j

R2
h

1
j

j −
−

=+=β  

The )j,i(  subscripts denote quantities evaluated at the grid point 
)R,Z( ji , while the notation j,i)RH(  is specifically used to replace j,ijHR . The 

unprimed and primed flow variables represented, respectively, those at 
two consecutive time levels T  and TT ∆+ . 

Along the tube axis the velocity is calculated according to the formula 

2

2,i
1,i h

2
U

Ψ
=  

This relation is derived from (*) by assuming constant velocity within 
a small radial distance h  from the axis. 
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Care must be taken in approximating the equation of motion (**). 
The first two nonlinear terms on the right-hand side are similar to the 
substantial derivative; they will be replaced by the upwind-difference 
scheme considered in the previous section. The scheme must be modified, 
however, to accommodate the arbitrary local flow direction, which may 
vary from one grid point to another. We adopt here a scheme developed 
by Torrance (1968) that has been successfully used in solving natural 
convection (Torrance and Rockett, 1969) and rotating flow (Kopecky and 
Torrance, 1973) problems. 
 We first define fU  and bU  as the average axial velocities evaluated, 
respectively, at half a grid forward and backward from the point )R,Z( ji  in 

the Z  direction, or, 

)UU(
2
1

U j,ij,1if += +  

)UU(
2
1

U j,1ij,ib −+=  

Similarly, we define 

)(
2
1

,1, jijif VVV += +  

)(
2
1

1,, −+= jijib VVV  

as the radial velocities averaged at the half a grid forward and backward 
from that point in the R  direction, repectively. It can be easily be verified 
that the upwind differencing form is automatically preserved when the 
following numerical formulas are used. 

])UU(
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 The remaining terms in (**) are approximated by using forward 
differencing in time and central differencing in space. Their individual 
expressions follow. 
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Finally it results an equation that enables us to compute Ω  at TT ∆+  
based on the dimensionless vorticity distribution Ω  at the previous time 
step T . 
 In this way the fluid equations governing an unsteady flow have been 
formulated for numerical solution. To find the steady-state solution for the 
tube flow passing through a current constriction, a uniform axial fluid flow 
is first assumed. The finite-difference equations are then used repeatedly 
to compute the flow conditions at increasing time steps, until the 
difference between the solutions at two consecutive steps becomes 
negligibly small. When this happens the result is considered to be steady-
state solution for which we are looking. Thus we replace the original 
problem by an unsteady flow problem concerning the development of a 
uniform flow after a converging-diverging current field is suddenly turned 
on. The marching procedure described here is a powerful technique that is 
quite commonly employed in fluid dynamics to find the steady-state 
solution. 
 However, numerical instability may occur in the process of 
approaching the steady-state solution if the size of the time increment is 
not properly chosen. For a given grid size h , the constraints on T∆  are to 
be derived from a quasilinear analysis of Lax and Richtmyer (1956) for 
linear equations instead of from Hirt’s stability analysis. The latter is not 
adequate for the present case. As a first step, the difference 
representation of (**) is written in the form  

baaaaa 1j,i51j,i4j,i3j,1i2j,1i1
'
j,i +Ω+Ω+Ω+Ω+Ω=Ω −+−+  

in which the coefficients ka , are expressed in terms of velocity 
components at time T , are considered constant over the period T∆  in the 
computation, and b  is a constant determined by the magnetic field. 
According to Lax and Richtmyer, the numerical scheme is stable if the 
coefficients ka  are all positive. It can be shown that this requirement is 
automatically satisfied for all the coefficients except 3a . To require that 3a  
be greater than or equal to zero, a condition is derived that specifies the 
upper limit for the time increment. 

1
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2bbffbbff R
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)VVVVUUUU(
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1

T
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+++−+++−+≤∆  

 Although the current density does not appear explicitly in this 
relation, its effect is shown indirectly through the velocities fU , bU , fV  and 

bV  defined above. In general, a higher current density causes higher 
velocities in the neighborhood of the central electrode and, therefore, 
needs a smaller T∆  in the computation. 
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