

1 2

THE MU – PUZZLE FORMAL SYSTEM:
THEOREM GENERATION AND PROVING

BALAN Mihai, BALAN Mirela Ramona

1DENMARK TECHNICAL UNIVERISTY
ANKER ENGELUNDSVEJ 1, BUILDING 101A, 2800, KGS.

LYNGBY, DENMARK

ABSTRACT
This paper introduces a formal system in a form of a little puzzle.

“Can you produce MU?” is the puzzle. An initial string of characters: MI is
supplied. One has to generate all theorems in the MU – Puzzle starting
from the given string. A tree of theorems is created. In case of theorem
proving, one has to prove that giving a theorem, an axiom and the MU -
Puzzle formal system, the given theorem either belongs to the given
formal system or not. The results of the experiments are analyzed and
interpreted. Optimized solutions are proposed by jumping out from the M-
mode (machine) into the I-mode (intelligent).

1. INTRODUCTION

The purpose of this paper is to analyse and discuss theorem

generation and proving for a formal system i.e. MU Puzzle, in Artificial
Intelligence. Standard ML is used as the implementation language.

The first part of this paper analysis the Theorem Generation. All
theorems in the MU Puzzle are generated starting from a given
axiom (MI). An infinite number of theorems can be generated in a formal
system. In the MU Puzzle this is the case when an axiom starts with M.
Thus, one needs to use a variable for specifying the maximum number of
generated theorems. The breadth – first search algorithm is used for
generating all possible theorems. Different experiments are performed.
The number of generated theorems and the time needed for this process
are compared and analyzed. A tree of theorems is created and optimized
solutions are proposed.

The second part deals with the Theorem Proving. By using a given
formal system, an axiom and a theorem, one has to prove that either the
given theorem belongs to the given formal system or not. In the case of
the MU Puzzle formal system, the given axiom is MI and the theorem that

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 3

has to be proven is: MU. The breadth – first strategy is used for this
purpose. Different experiments are performed. The results are analyzed
and several properties of the made theorems are stated.

2. THEORETICAL CONSIDERATIONS

A formal system can explain most of the models and theories used in

Artificial Intelligence. It includes a language for specifying formulas and a
framework for manipulating these formulas. An interpretation that defines
the meaning of the formulas in the formal system can be connected to
that formal system. The formulas and the interpretation define a model of
the problem domain. The three components: the formulas, the formal
system, and the interpretation form a theory for the problem domain.

Using a formal system as the basis for Artificial Intelligence has
several advantages. Knowledge about formal systems makes it much
easier to understand logical theories, rewrite systems, production
systems, and blackboard systems that are all very important in AI. [1]

Formalization is the act of creating a formal system, in an attempt to
capture the essential features of a real world or conceptual system in
formal language. [2] A formal system includes a formal grammar used for
modelling purposes. A formal grammar is an abstract structure that
describes a formal language precisely: i.e., a set of rules that
mathematically describes a set of finite-length strings over an alphabet.
Thus, a formal system consists of an alphabet, a set of well-formed
formulas in the alphabet, a set of axioms, a set of inputs and a set of
deduction rules. The first two elements define the formal language (L).
The set of well-formed formulas can be given as a set of rules for forming
formulas. A rule has a left-hand side and a right-hand side separated by a
’�’. The left-hand side is often called the conditional part. The right hand
side of the rule is called conclusion. Often the deduction rules have only
one conclusion. [1]

A formal system is used for making deductions i.e. a process where
the input is a formal system and a formula. The purpose of the deduction
process is to determine whether the formula can be obtained from the
axioms either directly or using the deduction rules. A deduction process
consists in several steps. In each step a deduction rule is applied to
formulas e.g. axioms or previous obtained formulas (premises Pi , I =
1..n), getting new formulas (conclusions Ci j = 1..m). [1]

P1, P2, …,Pn ├ R C1, C2, …,Cm

A proof in a formal system is a finite sequence of formulas F1, F2,…, Fn

, where Fi is either an axiom or a formula being deduced from the set { F1,
F2,…, Fi-1 } by a deduction rule. [1]

A theorem, T ∈ Fs, is a formula for which there is a proof, where T is
Fn. [1]

The MU Puzzle is an example of a formal system - “Can you produce
MU?” is the puzzle. [3] The goal of the MU Puzzle is to determine whether

 56

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 3

MU is a theorem in the above system, given that MI is the only axiom.
This paper tries to give an answer to this issue.

The MU Puzzle is defined as a formal system, in the following way:
• an alphabet : {M, I, U}
• formulas: any set of characters in the alphabet resulting in a string.
• a set of axioms : {MI}
• a set of deduction rules :

 Rule 1: xI → xIU  given a string that ends in I, it is
possible to add an U at the end.

 Rule 2: Mx → Mxx 
given a string that begins with M,
any string that follows M can be
duplicated.

 Rule 3: xIIIy → xUy 
given a string that contains III, a
new string is created by replacing III
with U.

 Rule 4: xUUy → xy 
given a string that contains UU, a
new string can be created by
deleting UU from the string.

where x and y represents any character or string (possibly empty) from
the alphabet.

None of the rules can be used backwards. Given a particular string
e.g. MUIIU of elements from the alphabet and only one axiom, MI, one
can asks whether the given string is a theorem in the system or not. This
can be proved by finding a sequence of deduction rules that leads from
the axiom to the desired theorem.

MI → MII MIIII → MIIIIU MUIU → MUIUUIU → MUIIU
R2

→
R2 R1

→
R3 R2 R4

3. THEOREM GENERATION

A SML computer program can be used for generating all possible

theorems starting with the given axiom: MI. The algorithm can do that in
a very methodical way:

• Step 1 - Apply every applicable rule to the axiom MI. This gives two
new theorems: MIU and MII.

• Step 2 - Apply every applicable rule to the theorems produces in
step 1.

• Step 3 - Apply every applicable rule to the theorems produces in
step 2, etc …

Thus, the algorithm generates a tree of theorems (fig. 1) where each
branch corresponds to using a rule that creates a new theorem from an
old one. The breadth – first search algorithm is used for generating all
possible theorems. The algorithm guarantees that the first solution found
is also the shortest one but it requires more working memory than depth -
first search.

The formal system used for theorem generation is depicted in fig 2.

 57

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 3

In order to generate all theorems, a theoremGen function is built. The
first argument is the given theorem. This function returns a new list of
theorems as a second argument. The rule names and the actual rules are
the third parameter and the fourth parameter, respectively. The last
parameter is the maximum number of generated theorems. Thus, an
infinite number of generated theorems can be avoided. Each obtained
theorem contains information about its generation. A deduction map is
used to map from a theorem into a parent that is either an axiom or a list
of parents.

The theorem generation process is done by calling the generate
function. A deduction map is returned when either the maximum number
of theorem is zero or the list of unused theorems is empty. This function
takes an axiom and it returns new theorems that can be derived from the
axiom. This function uses the previous theoremGen function to generate
the theorems. The rule names and the actual rules are the third
parameter and the fourth parameter, respectively. The generation process
is done in a first-breadth way and it stops when the maximum number of
theorems is reached or no new theorems can be generated.

R1

R2

MIU
U

R3

MUIU

MIIIIUIIIIU

R
2

MIIUIIUIIUII
U

R
2

MIUIUIUIUIUIUIUIU

R
2

R3

R2

MIIIIIIII MUI

MIU

R2

MIIIIU

MIIIIIIIIU

MIIII

MIIU

MIIUIIU

MII

R2

R1

R1
R2

R1

R2

R2

R1

MIUIUIUIU

MIUIU

MIU

MI

Fig. 1. Theorem Generation Tree

 58

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 3

datatype F rule name = R1 | R2 | R3 | R4 (* 2.i *)
datatype Variable_symbol = x | y (* 2.r *)
datatype Constant_name = M | I | U
datatype Functor_name = List (* dummy *)
datatype Term = Fct of (Functor_name * Term list) |
 Const of (Constant_name)|
 F_v of (Variable_symbol) |
 T_v of (Variable_symbol)
type Rule_term = Term
type Formula_schema = Rule_term list (* 2.m *)
type Left_side = Formula_schema (* 2.k *)
type Right_side = Formula_schema (* 2.l *)
datatype F_rule_def = F_rule of (Left_side * Right_side) (* 2.j *)
type F_rules = (F_rule_name * F_rule_def) list (* 1.d *)

type Formula = Term list (* 1.c *)
type Axiom = Formula (* 1.b *)
datatype Formal_system = FS of (Axiom * F_rules) (* 1.a *)

 Fig. 2. Formal System declaration for MU Puzzle problem

Several experiments are performed in this case. Different test cases

are defined. Each test case is contained in a separate file (i.e.
“TGTestx.sml”, where x = 0 … 7). A different number of maximum calls is
defined for each test case. The test case file skeleton is shown in fig. 3.
The tests are performed on a Sun System running Solaris 9 operating
system and Moscow ML (2.0).

The algorithm for the test case files can be described as follows: load
the Time, Timer and Int libraries; start the counter; generate all
theorems; get the number of milliseconds needed for the theorem
generation and convert it to string; write the generated theorems and the
corresponding time for this task in the corresponding result test case file
(i.e. TGx_test.txt); close the result test case file.

The actual process of theorems generation can be displayed in a tree
(fig. 1).

During the generating process several properties of the theorems are
noticed:

• All theorems begin with M. Each new theorem inherits its first letter
from an earlier theorem. Thus all theorems’ first letter can be traced
back to the first letter of the MI axiom.

• An infinite number of theorems can be generated unless a maximum
number of theorems is specified.

• Rule 2 generates an infinite number of theorems by using any axiom
that starts with M.

• If the axiom doesn’t start with I or U than the theoremGen stops.
• The number of generated theorems depends on the chosen axiom.

Details about the maximum number of calls, number of generated
theorems and the time needed for that, are listed in Table 1

 59

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 3

Fig. 3. Theorem Generation for Test Case no. 2

(* ------------- Test Case no. 2 -> Theorem Generation ------------- *)

(load "Time");
(load "Timer");
(load "Int");

val cycles = Timer.startCPUTimer();

toString(
let val ax = [Const(M), Const(I)]
 val rules = [(R1, F_rule([F_v(x), Const(I)], [F_v(x), Const(I),
Const(U)])),
 (R2, F_rule([Const(M), F_v(x)], [Const(M), F_v(x), F_v(x)])),
 (R3, F_rule([F_v(x), Const(I), Const(I), Const(I), F_v(y)],
 [F_v(x), Const(U), F_v(y)])),
 (R4, F_rule([F_v(x), Const(U), Const(U), F_v(y)],
 [F_v(x), F_v(y)]))
]
 val rule_names = dom(rules)
 in generate([(ax, [])], [], rule_names, rules, 50)
 end
);

let
 val timp = (Time.toMilliseconds)(#usr ((Timer.checkCPUTimer)(cycles)))
 val timpStr =Int.toString(timp)
 val myoutstream = TextIO.openOut "TG2_test.txt"
 val afara = TextIO.output(myoutstream, "Test Case no.2 Theorem Generation
for max 50 calls\n ")
 val afara1 = TextIO.output(myoutstream, it)
 val afara2 = TextIO.output(myoutstream, "\n\n Time needed for theorem
generation is: ")
 val afara3 = TextIO.output(myoutstream, timpStr)
in
 TextIO.closeOut(myoutstream)
end;

Table 1

Test Case No.
Maximum No.

of Calls
No. Of Generated

Theorems
Time
[ms]

0 5 3 20
1 10 4 20
2 50 18 20
3 100 37 30
4 500 231 180
5 1000 391 870
6 2000 700 3600
7 5000 1952 43010

 60

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 3

 Theorem Generation

0
10000
20000
30000
40000
50000

3 4 18 37 23
1

39
1

70
0

19
52

No. of Theorems
Ti

m
e

[m
s]

Fig. 4. Theorem Generation Chart Function on Time

4. THEOREM PROVING

4.1. Theorem Proving in the M-mode

Given a formal system, an axiom and a theorem one has to prove

that the given theorem belongs to the given formal system. In the MU
Puzzle case, the formal system is the MU Puzzle and the axiom is MI. This
paper tries to prove that either MU is theorem in the system or not. One
can use either the first – depth or breadth – first strategy to give the
proof.

By using the first – depth strategy and rule no. 2 the theorems can be
generated infinitely. One may not find the theorem even if it belongs to
the system. Even if it is found the proof could not be minimal.

Considering the search tree in fig. 3, by using the first-depth strategy
all the theorems will be generated in the left branch of the tree that may
have no end. If the needed theorem is MII (near the axiom but on the
right branch) it might not be possible to find the wanted theorem because
theorems are generated only in the left branch. Thus, this solution is not
optimal for the problem.

(* ------------- Test Used for Proving the MU Theorem ------------- *)

let val ax = [Const(M), Const(I)]
 val rules = [(R1, F_rule([F_v(x), Const(I)], [F_v(x), Const(I),
Const(U)])),
 (R2, F_rule([Const(M), F_v(x)], [Const(M), F_v(x),
F_v(x)])),
 (R3, F_rule([F_v(x), Const(I), Const(I), Const(I),
F_v(y)],
 [F_v(x), Const(U), F_v(y)])),
 (R4, F_rule([F_v(x), Const(U), Const(U), F_v(y)],
 [F_v(x), F_v(y)]))
]
 val rule_names = dom(rules)
in proveTheorem([Const M, Const U] ,ax, rule names, rules, 3000)

Fig. 5. Tests of Theorem Proving

 61

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 3

Bu using the breadth – first strategy, the desired theorem can be

found during the theorem generation process. This strategy also proves
that a minimal number of rules are used for finding the theorem. The
complete search tree is displayed in fig. 3.

Several experiments are performed involving the MU formula. The
code in fig. 5 is used for proving that MU formula is either a theorem or
not.

The result of running this test is: P_fail – the MU theorem is not
found. This can be interpreted either the formula is not a theorem in the
MU Puzzle system, or the upper limit is too small to be found. Different
values are chosen for the upper limit and the returned results are the
same – the MU theorem may not belong to the MU Puzzle system.

4.2. Jumping out from the M-mode into the I-mode

By increasing the upper limit too much the proof could not be found.

If the MU theorem doesn’t belong to the system it will never be found no
matter how big is the upper limit.

In this case we have to jump out from the Machine (M) mode into the
Intelligent (I) mode. This can be achieved only by humans and not by a
machine. Thus, we have to prove that MU doesn’t belong to the system by
finding a common property to all theorems in the system, but not MU.

Performing different experiments with different formulae (e.g. MUU,
MUUM, MUM) one comes to notice that any formula that contains only the
M and U letters cannot be a theorem in the MU Puzzle.

Considering the 3rd rule (xIIIy � xUy) it can be proved that any
formula in which the number of Is is a multiple of 3 is not a theorem. This
is because of Rule 3 that transforms three consecutive Is in a U. Thus, the
following property can be formulated and proved inductively:

• The numbers of Is in any theorem in the MU Puzzle is not a multiple
of 3

In order to prove it, one can consider that T is a theorem in the MU

Puzzle system and Ti, i = 1 … n, are the corresponding proofs. We have to
prove that the number of Is in Ti is not a multiple of 3. Let T1 be the
axiom – it contains only one I Æ not a multiple of 3.

Let us suppose that the number of Is is not a multiple of 3 for Ti-1 and
Ti-1 is not the next step if Ti is not the axiom. Conform the four rules of the
MU Puzzle system we have:

� Rule 1: The number of Is in Ti-1 is the same as in Ti if Ti follows
from Ti-1.

� Rule 2: The number of Is in Ti is the double of the number of the
Is in Ti-1 if Ti follows from Ti-1. All the time the number of Is in Ti-1

or Ti-1 is 1 or 2. The same for Ti.

 62

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 3

� Rule 3: If Ti follows from Ti-1 the number of Is in Ti-1 is the number
of Is in Ti minus 3. Thus the number of Is in Ti-1 or Ti modulo 3 is
the same.

� Rule 4: If Ti follows from Ti-1 the number of Is in Ti-1 is the same as
in Ti.

Thus we prove that the number of Is in Ti and also Tn is not a multiple
of 3. Because the only way to remove all Is from a theorem is to replace
3 Is with an U, and the number of Is in a theorem is never equal to 3,
gives that MU is not a theorem for the MU Puzzle system.

It is an inherent property of intelligence that it can jump out of the
task which it is performing, and survey what it has done; it is always
looking for, and often finding, patterns. The jumping out can be very
simple or very complex. [3]

5. CONCLUSION

A well-chosen representation may considerably reduce the amount of

search needed to solve a problem. In case of a bad-chosen representation
the problem becomes virtually impossible

In a first attempt to solve the MU Puzzle a theorem is simply
represented by its string of letters. Four rules are used to expand nodes of
the search tree. Each node in the search tree represents a theorem.

Thus, the MU Puzzle problem is a tree-search problem and consists in
finding a path of rules that applied to the MI axiom gives the MU theorem.
A breadth-first search algorithm is used.

 Instead of concentrating on the selection of the best possible search
algorithm, one can try to optimize the chosen representation. For the MU
Puzzle, a better representation involves an extra descriptor of knowledge
per theorem.

This is a Boolean item (HasTripleI) that indicates whether the total
number of Is in a theorem is a multiple of three. We can now verify that
each of the four rules creates new theorems with HasTripleI’s value equal
to that of the theorem it is created from.

The observation that MI (false) and MU (true) have unequal
HasTripleI values is sufficient to prove that MU is not a theorem.

Choosing a knowledge representation in problem solving is mostly
domain-specific. General techniques, e.g. abstraction, proof successful by
understanding the domain under investigation.

It is important to select a search algorithm that will find a solution, if
it exists, in an efficient manner: programming time, calculation time and
the required amount of working memory.

It is an inherent property of intelligence that it can jump out of the
task which it is performing (M-mode), and survey what it has done (I-
mode); it is always looking for, and often finding, patterns [3].

 63

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 3

REFERENCES

[1.] ØSTERBY, T., Artificial Intelligence, Denmark Technical University,

2003.
[2.] http://www.wordiq.com
[3.] http://www.norreg.dk/tok/math01.htm
[4.] www.wikipedia.com
[5.] http://www.rdegraaf.nl/index.asp?sND_ID=350452
[6.] http://www.cse.buffalo.edu/~rapaport/510/formalsystems.html
[7.] http://www.esuc.ucla.edu/
[8.] http://home.planet.nl/~faase009/MIUpuzzle.html

 64

http://www.wordiq.com/
http://www.norreg.dk/tok/math01.htm
http://www.wikipedia.com/
http://www.rdegraaf.nl/index.asp?sND_ID=350452
http://www.cse.buffalo.edu/~rapaport/510/formalsystems.html
http://www.esuc.ucla.edu/
http://home.planet.nl/~faase009/MIUpuzzle.html

	THEOREM GENERATION AND PROVING

