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ABSTRACT 
This paper introduces a formal system in a form of a little puzzle. 

“Can you produce MU?” is the puzzle. An initial string of characters: MI is 
supplied. One has to generate all theorems in the MU – Puzzle starting 
from the given string. A tree of theorems is created. In case of theorem 
proving, one has to prove that giving a theorem, an axiom and the MU - 
Puzzle formal system, the given theorem either belongs to the given 
formal system or not. The results of the experiments are analyzed and 
interpreted. Optimized solutions are proposed by jumping out from the M-
mode (machine) into the I-mode (intelligent).  

 
 

1. INTRODUCTION 
 
The purpose of this paper is to analyse and discuss theorem 

generation and proving for a formal system i.e. MU Puzzle, in Artificial 
Intelligence. Standard ML is used as the implementation language. 

The first part of this paper analysis the Theorem Generation. All 
theorems in the          MU Puzzle are generated starting from a given 
axiom (MI). An infinite number of theorems can be generated in a formal 
system. In the MU Puzzle this is the case when an axiom starts with M. 
Thus, one needs to use a variable for specifying the maximum number of 
generated theorems. The breadth – first search algorithm is used for 
generating all possible theorems. Different experiments are performed. 
The number of generated theorems and the time needed for this process 
are compared and analyzed. A tree of theorems is created and optimized 
solutions are proposed. 

The second part deals with the Theorem Proving. By using a given 
formal system, an axiom and a theorem, one has to prove that either the 
given theorem belongs to the given formal system or not. In the case of 
the MU Puzzle formal system, the given axiom is MI and the theorem that 
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has to be proven is: MU. The breadth – first strategy is used for this 
purpose. Different experiments are performed. The results are analyzed 
and several properties of the made theorems are stated. 
 

2. THEORETICAL CONSIDERATIONS 
 
A formal system can explain most of the models and theories used in 

Artificial Intelligence. It includes a language for specifying formulas and a 
framework for manipulating these formulas. An interpretation that defines 
the meaning of the formulas in the formal system can be connected to 
that formal system. The formulas and the interpretation define a model of 
the problem domain. The three components: the formulas, the formal 
system, and the interpretation form a theory for the problem domain.  

Using a formal system as the basis for Artificial Intelligence has 
several advantages. Knowledge about formal systems makes it much 
easier to understand logical theories, rewrite systems, production 
systems, and blackboard systems that are all very important in AI. [1] 

Formalization is the act of creating a formal system, in an attempt to 
capture the essential features of a real world or conceptual system in 
formal language. [2] A formal system includes a formal grammar used for 
modelling purposes. A formal grammar is an abstract structure that 
describes a formal language precisely: i.e., a set of rules that 
mathematically describes a set of finite-length strings over an alphabet. 
Thus, a formal system consists of an alphabet, a set of well-formed 
formulas in the alphabet, a set of axioms, a set of inputs and a set of 
deduction rules. The first two elements define the formal language (L). 
The set of well-formed formulas can be given as a set of rules for forming 
formulas. A rule has a left-hand side and a right-hand side separated by a 
’�’. The left-hand side is often called the conditional part. The right hand 
side of the rule is called conclusion. Often the deduction rules have only 
one conclusion. [1] 

A formal system is used for making deductions i.e. a process where 
the input is a formal system and a formula. The purpose of the deduction 
process is to determine whether the formula can be obtained from the 
axioms either directly or using the deduction rules. A deduction process 
consists in several steps. In each step a deduction rule is applied to 
formulas e.g. axioms or previous obtained formulas (premises Pi , I = 
1..n), getting new formulas (conclusions Ci j = 1..m). [1] 

 
P1, P2, …,Pn  ├ R  C1, C2, …,Cm 

 
A proof in a formal system is a finite sequence of formulas F1, F2,…, Fn  

, where Fi is either an axiom or a formula being deduced from the set { F1, 
F2,…, Fi-1 } by a deduction rule. [1] 

A theorem, T ∈ Fs, is a formula for which there is a proof, where T is 
Fn. [1] 

The MU Puzzle is an example of a formal system - “Can you produce 
MU?” is the puzzle. [3] The goal of the MU Puzzle is to determine whether 
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MU is a theorem in the above system, given that MI is the only axiom. 
This paper tries to give an answer to this issue. 

The MU Puzzle is defined as a formal system, in the following way: 
• an alphabet : {M, I, U} 
• formulas: any set of characters in the alphabet resulting in a string. 
• a set of axioms : {MI} 
• a set of deduction rules : 

 Rule 1:  xI  →  xIU    given a string that ends in I, it is 
possible to add an U at the end. 

 Rule 2:  Mx  →  Mxx  
given a string that begins with M, 
any string that follows M can be 
duplicated. 

 Rule 3:  xIIIy  →  xUy    
given a string that contains III, a 
new string is created by replacing III 
with U. 

 Rule 4:  xUUy  →  xy    
given a string that contains UU, a 
new string can be created by 
deleting UU from the string. 

 
where x and y represents any character or string (possibly empty) from 
the alphabet.  

None of the rules can be used backwards. Given a particular string 
e.g. MUIIU of elements from the alphabet and only one axiom, MI, one 
can asks whether the given string is a theorem in the system or not. This 
can be proved by finding a sequence of deduction rules that leads from 
the axiom to the desired theorem.  

 

MI   →    MII       MIIII   →    MIIIIU     MUIU   →    MUIUUIU  →    MUIIU 
R2

→
R2 R1

→
R3 R2 R4

 
3. THEOREM GENERATION 
 
A SML computer program can be used for generating all possible 

theorems starting with the given axiom: MI. The algorithm can do that in 
a very methodical way: 

• Step 1 - Apply every applicable rule to the axiom MI. This gives two 
new theorems: MIU and MII. 

• Step 2 - Apply every applicable rule to the theorems produces in 
step 1. 

• Step 3 - Apply every applicable rule to the theorems produces in 
step 2, etc … 

Thus, the algorithm generates a tree of theorems (fig. 1) where each 
branch corresponds to using a rule that creates a new theorem from an 
old one. The breadth – first search algorithm is used for generating all 
possible theorems. The algorithm guarantees that the first solution found 
is also the shortest one but it requires more working memory than depth - 
first search. 

The formal system used for theorem generation is depicted in fig 2. 
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In order to generate all theorems, a theoremGen function is built. The 
first argument is the given theorem. This function returns a new list of 
theorems as a second argument. The rule names and the actual rules are 
the third parameter and the fourth parameter, respectively. The last 
parameter is the maximum number of generated theorems. Thus, an 
infinite number of generated theorems can be avoided. Each obtained 
theorem contains information about its generation. A deduction map is 
used to map from a theorem into a parent that is either an axiom or a list 
of parents. 

The theorem generation process is done by calling the generate 
function. A deduction map is returned when either the maximum number 
of theorem is zero or the list of unused theorems is empty. This function 
takes an axiom and it returns new theorems that can be derived from the 
axiom. This function uses the previous theoremGen function to generate 
the theorems. The rule names and the actual rules are the third 
parameter and the fourth parameter, respectively. The generation process 
is done in a first-breadth way and it stops when the maximum number of 
theorems is reached or no new theorems can be generated. 
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Fig. 1. Theorem Generation Tree
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datatype F rule name      = R1 | R2 | R3 | R4                   (* 2.i *)
datatype Variable_symbol  = x | y                               (* 2.r *) 
datatype Constant_name    = M | I | U 
datatype Functor_name     = List                               (* dummy *)
datatype Term             = Fct of (Functor_name * Term list) | 
                            Const of (Constant_name)| 
                            F_v of (Variable_symbol) | 
                            T_v of (Variable_symbol) 
type     Rule_term        = Term 
type     Formula_schema   = Rule_term list                       (* 2.m *)
type     Left_side        = Formula_schema                       (* 2.k *)
type     Right_side       = Formula_schema                       (* 2.l *)
datatype F_rule_def       = F_rule of (Left_side * Right_side)   (* 2.j *)
type     F_rules          = (F_rule_name * F_rule_def) list      (* 1.d *)
 
type     Formula          = Term list                            (* 1.c *) 
type     Axiom            = Formula                              (* 1.b *) 
datatype Formal_system    = FS of (Axiom * F_rules)              (* 1.a *) 

 Fig. 2. Formal System declaration for MU Puzzle problem 
 
 
Several experiments are performed in this case. Different test cases 

are defined. Each test case is contained in a separate file (i.e. 
“TGTestx.sml”, where x = 0 … 7). A different number of maximum calls is 
defined for each test case. The test case file skeleton is shown in fig. 3. 
The tests are performed on a Sun System running Solaris 9 operating 
system and Moscow ML (2.0). 

The algorithm for the test case files can be described as follows: load 
the Time, Timer and Int libraries; start the counter; generate all 
theorems; get the number of milliseconds needed for the theorem 
generation and convert it to string; write the generated theorems and the 
corresponding time for this task in the corresponding result test case file 
(i.e. TGx_test.txt); close the result test case file. 
 

The actual process of theorems generation can be displayed in a tree 
(fig. 1). 

During the generating process several properties of the theorems are 
noticed: 

• All theorems begin with M. Each new theorem inherits its first letter 
from an earlier theorem. Thus all theorems’ first letter can be traced 
back to the first letter of the MI axiom. 

• An infinite number of theorems can be generated unless a maximum 
number of theorems is specified.  

• Rule 2 generates an infinite number of theorems by using any axiom 
that starts with M. 

• If the axiom doesn’t start with I or U than the theoremGen stops. 
• The number of generated theorems depends on the chosen axiom. 

Details about the maximum number of calls, number of generated 
theorems and the time needed for that, are listed in Table 1  
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Fig. 3. Theorem Generation for Test Case no. 2 

(* ------------- Test Case no. 2 -> Theorem Generation ------------- *)
 
(load "Time"); 
(load "Timer"); 
(load "Int"); 
 
val cycles = Timer.startCPUTimer(); 
 
toString( 
let val ax = [Const(M), Const(I)] 
    val rules = [(R1, F_rule([F_v(x), Const(I)], [F_v(x), Const(I), 
Const(U)])), 
                 (R2, F_rule([Const(M), F_v(x)], [Const(M), F_v(x), F_v(x)])),
                 (R3, F_rule([F_v(x), Const(I), Const(I), Const(I), F_v(y)], 
                             [F_v(x), Const(U), F_v(y)])), 
                 (R4, F_rule([F_v(x), Const(U), Const(U), F_v(y)], 
                             [F_v(x), F_v(y)])) 
                ] 
    val rule_names = dom(rules) 
    in generate([(ax, [])], [], rule_names, rules, 50) 
    end 
); 
 
 
let 
   val timp = (Time.toMilliseconds)(#usr ((Timer.checkCPUTimer)(cycles))) 
   val timpStr =Int.toString(timp) 
   val myoutstream = TextIO.openOut "TG2_test.txt" 
   val afara = TextIO.output(myoutstream, "Test Case no.2 Theorem Generation 
for max 50 calls\n ") 
   val afara1 = TextIO.output(myoutstream, it) 
   val afara2 = TextIO.output(myoutstream, "\n\n Time needed for theorem 
generation is: ") 
   val afara3 = TextIO.output(myoutstream, timpStr) 
in 
   TextIO.closeOut(myoutstream) 
end; 

 
Table 1 

Test Case No. 
Maximum No. 

of Calls 
No. Of Generated 

Theorems 
Time 
[ms] 

0 5 3 20 
1 10 4 20 
2 50 18 20 
3 100 37 30 
4 500 231 180 
5 1000 391 870 
6 2000 700 3600 
7 5000 1952 43010 
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Fig. 4. Theorem Generation Chart Function on Time 

 
 
 
 
 
 
 
 
 
 
 

4. THEOREM PROVING 
 
4.1. Theorem Proving in the M-mode 
 
Given a formal system, an axiom and a theorem one has to prove 

that the given theorem belongs to the given formal system. In the MU 
Puzzle case, the formal system is the MU Puzzle and the axiom is MI. This 
paper tries to prove that either MU is theorem in the system or not. One 
can use either the first – depth or breadth – first strategy to give the 
proof. 

By using the first – depth strategy and rule no. 2 the theorems can be 
generated infinitely. One may not find the theorem even if it belongs to 
the system. Even if it is found the proof could not be minimal.  

Considering the search tree in fig. 3, by using the first-depth strategy 
all the theorems will be generated in the left branch of the tree that may 
have no end. If the needed theorem is MII (near the axiom but on the 
right branch) it might not be possible to find the wanted theorem because 
theorems are generated only in the left branch. Thus, this solution is not 
optimal for the problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 

(* ------------- Test Used for Proving the MU Theorem ------------- *)
 
let val ax = [Const(M), Const(I)] 
    val rules = [(R1, F_rule([F_v(x), Const(I)], [F_v(x), Const(I), 
Const(U)])), 
                 (R2, F_rule([Const(M), F_v(x)], [Const(M), F_v(x), 
F_v(x)])), 
                 (R3, F_rule([F_v(x), Const(I), Const(I), Const(I), 
F_v(y)], 
                             [F_v(x), Const(U), F_v(y)])), 
                 (R4, F_rule([F_v(x), Const(U), Const(U), F_v(y)], 
                             [F_v(x), F_v(y)])) 
                ] 
    val rule_names = dom(rules) 
in proveTheorem([Const M, Const U] ,ax, rule names, rules, 3000)

Fig. 5. Tests of Theorem Proving
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Bu using the breadth – first strategy, the desired theorem can be 

found during the theorem generation process. This strategy also proves 
that a minimal number of rules are used for finding the theorem. The 
complete search tree is displayed in fig. 3. 

Several experiments are performed involving the MU formula. The 
code in fig. 5 is used for proving that MU formula is either a theorem or 
not. 

The result of running this test is: P_fail – the MU theorem is not 
found. This can be interpreted either the formula is not a theorem in the 
MU Puzzle system, or the upper limit is too small to be found. Different 
values are chosen for the upper limit and the returned results are the 
same – the MU theorem may not belong to the MU Puzzle system.  

 
4.2. Jumping out from the M-mode into the I-mode 
 
By increasing the upper limit too much the proof could not be found. 

If the MU theorem doesn’t belong to the system it will never be found no 
matter how big is the upper limit.  

In this case we have to jump out from the Machine (M) mode into the 
Intelligent (I) mode. This can be achieved only by humans and not by a 
machine. Thus, we have to prove that MU doesn’t belong to the system by 
finding a common property to all theorems in the system, but not MU. 

Performing different experiments with different formulae (e.g. MUU, 
MUUM, MUM) one comes to notice that any formula that contains only the 
M and U letters cannot be a theorem in the MU Puzzle.  

Considering the 3rd rule ( xIIIy  �  xUy ) it can be proved that any 
formula in which the number of Is is a multiple of 3 is not a theorem. This 
is because of Rule 3 that transforms three consecutive Is in a U. Thus, the 
following property can be formulated and proved inductively: 
 

• The numbers of Is in any theorem in the MU Puzzle is not a multiple 
of 3 

 
In order to prove it, one can consider that T is a theorem in the MU 

Puzzle system and Ti, i = 1 … n, are the corresponding proofs. We have to 
prove that the number of Is in Ti is not a multiple of 3. Let T1 be the 
axiom – it contains only one I Æ not a multiple of 3. 

Let us suppose that the number of Is is not a multiple of 3 for Ti-1 and 
Ti-1 is not the next step if Ti is not the axiom. Conform the four rules of the 
MU Puzzle system we have: 

� Rule 1: The number of Is in Ti-1 is the same as in Ti if Ti follows 
from Ti-1. 

� Rule 2: The number of Is in Ti is the double of the number of the 
Is in Ti-1 if Ti follows from Ti-1. All the time the number of Is in Ti-1 

or Ti-1 is 1 or 2. The same for Ti. 
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� Rule 3: If Ti follows from Ti-1 the number of Is in Ti-1 is the number 
of Is in Ti minus 3. Thus the number of Is in Ti-1 or Ti modulo 3 is 
the same. 

� Rule 4: If Ti follows from Ti-1 the number of Is in Ti-1 is the same as 
in Ti. 

Thus we prove that the number of Is in Ti and also Tn is not a multiple 
of 3.  Because the only way to remove all Is from a theorem is to replace 
3 Is with an U, and the number of Is in a theorem is never equal to 3, 
gives that MU is not a theorem for the MU Puzzle system. 

It is an inherent property of intelligence that it can jump out of the 
task which it is performing, and survey what it has done; it is always 
looking for, and often finding, patterns. The jumping out can be very 
simple or very complex. [3] 
 

5. CONCLUSION 
 
A well-chosen representation may considerably reduce the amount of 

search needed to solve a problem. In case of a bad-chosen representation 
the problem becomes virtually impossible 

In a first attempt to solve the MU Puzzle a theorem is simply 
represented by its string of letters. Four rules are used to expand nodes of 
the search tree. Each node in the search tree represents a theorem.  

Thus, the MU Puzzle problem is a tree-search problem and consists in 
finding a path of rules that applied to the MI axiom gives the MU theorem. 
A breadth-first search algorithm is used. 

 Instead of concentrating on the selection of the best possible search 
algorithm, one can try to optimize the chosen representation. For the MU 
Puzzle, a better representation involves an extra descriptor of knowledge 
per theorem.  

This is a Boolean item (HasTripleI) that indicates whether the total 
number of Is in a theorem is a multiple of three. We can now verify that 
each of the four rules creates new theorems with HasTripleI’s value equal 
to that of the theorem it is created from.  

The observation that MI (false) and MU (true) have unequal 
HasTripleI values is sufficient to prove that MU is not a theorem.  

Choosing a knowledge representation in problem solving is mostly 
domain-specific. General techniques, e.g. abstraction, proof successful by 
understanding the domain under investigation.  

It is important to select a search algorithm that will find a solution, if 
it exists, in an efficient manner: programming time, calculation time and 
the required amount of working memory.  

It is an inherent property of intelligence that it can jump out of the 
task which it is performing (M-mode), and survey what it has done (I-
mode); it is always looking for, and often finding, patterns [3]. 
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