
ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA
2006, Tome IV, Fascicole 1, (ISSN 1584 – 2665)

FACULTY OF ENGINEERING HUNEDOARA,
5, REVOLUTIEI, 331128, HUNEDOARA

USE THE GRAPHICAL PROGRAMMING LANGUAGE

LABVIEW FOR LEARN THE BASICS OF PARALLEL ADDERS

CRISTEA Ana Daniela

UNIVERSITY POLITEHNICA TIMISOARA
FACULTY OF ENGINEERING HUNEDOARA

ABSTRACT:
This article propose to realize:

• Explein how to use LabVIEW to bild a simulation;
• how to implement two tips of adders: carry selection adder and carry completion

adder;

KEYWORDS:
Adder, carry , LabVIEW, programming

1. INTRODUCTION

LabVIEW is a entirely graphical language which looks somewhat like an

electronic schematic diagram on the one hand and a 1950’a vintage style
electronic instrument on the other-these are the concepts of the block diagram and
the front panel. LabVIEW is hierarchical in that any virtual instrument that we design
(any complete functional unit it called a virtual instrument and is almost always
referred to as a “VI”) can be quickly convert in to a module which can be a sub-unit
or another VI. This is entirely analogous to the concept of a procedure in a traditional
procedure in traditional programming.

This language have two “faces”:
 the block diagram - is almost the “back side” of the VI, practical is the

program. It shows how the control and the indicators fit together as well
licks the hidden modules where all the work gets done;

 the front panel – the face that the users sees practical is the user interface.
It contains controls and indicators. By intelligent design of the front panel of
a VI it is fairy simple to produce a simple clean design for the user.

 We use this language to simulate two types of adders: carry select adder and
carry completion adder.

2. CARRY SELECT ADDER

This type of adder is build use Ripple carry adder (RCA), who is almost the
simple adder. We add two numbers represent at the four bits: a number
and a number , obtain the result

0123 aaaaa =

0123 bbbbb = 0123 sssss = , like can see in the front
panel of the user interface, in figure 1.

153

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2006 TOME IV. Fascicole 1

Fig. 1 The user interface

 A button push represent 1 logic and a button who is not push represent 0
logic. Sow in this example we have:

1101
1011
0010 +

It is important to note that in LabVIEW a Boolean True/False is not the same as
a numeric 1/0. We need to insert a Boolean to (0/1). We need this in cases when to
multiply a number by 0 or 1 dependent on the result of an operation. It probably
would have been more correct to write the table using True and False, but it would
have been too cluttered. We can also change numbers to Boolean operators.
Careful when using this option because it takes the binary equivalent of the number,
such as a decimal 6 is equal to 01100000000000000000000000000000 in binary. Before
get angry, this is because it is represented as a 32 bit number, and written backwards
because that is the way LabVIEW does it. We could change the Representation of 6
to a byte (again by right clicking) if we need to save memory. This can be helpful
when controlling multiple switches and are in need of a control.

The block diagram, figure 2, represents the “back side” of this VI.

Fig. 2. The block diagram

154

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2006 TOME IV. Fascicole 1

 This is the implementation of the carry select adder with logical gate and use
the parallelization to obtain a better speed. In figure 4 it’s present the principle
diagram of this adder, where the RCA cells look like in figure 3. The equation use for
RCA is:

⎩
⎨
⎧

⊕⊕=

++=+

iiii

iiiiii1i

cbas
cbcabac

 is

ic

1ic +

ib ia
Fig. 3. Representation with logical gates of one cell

 b1 a1b1 a1 b1 a1

155

Fig. 4. The principle diagram

 We don’t expect for and make a calculation of ic ii ba + when carry is 0 and
 when carry is 1, that cos carry can be only 1 or 0. When carry come from

the precedent rang we make selection of the right carry for the next leval and a
summe.

ii ba + ic

 For example when add 11 ba + in first cell, we consider carry 0 and make sum
s1’and carry for the next leval c2’calculation. In secand cell we add , consider
carry 1 and make sum s1’’ and carry for the next leval c2’’. When carry from the
precedent rang c1 it come, we select s1’ and c2’ if it 0 logic and we select s1’’ and
c2’’ if it 1 logic.

11 ba +

RCA

a0 b0

s0

c0c1

RCA

s1’

0c2’

RCA

a1b1

s1’’

1c2’’

s1
c2

RCA

s2’

0c3’ RCA
0 c2’

RCA

a1b1

s2’’

1c3’’

s2

s3’

c3

RCA

a1 b1

s3’’

1 c2’

s3
c4

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2006 TOME IV. Fascicole 1

3. CARRY COMPLETION ADDER

This type of adder is build start with the idea to make two way to carry

propagation (way 0 to propagation and way 1 to propagation). We add two
numbers represent at the four bits: a number 0123 aaaaa = and a number b ,
obtain the result , like can see in the front panel of the user interface, in
figure 5.

0123 bbbb=

0123 sssss =

Fig. 5 The user interface

Imagine that we have just written a very complicated program. We feel
really proud and run it, but it doesn't work quite right. When we look over the
wire diagram we realize missed an important complicated calculation.

There is no way to fit it in the diagram, and if we tried, probably more
mistakes would be created. Or we need a piece of code for several programs we
are developing, and we don't feel like rewriting it every time. In text based
programs, we could just type or copy the code in anywhere.

LabVIEW uses sub-Vies which are sub-routines for functions we may use
many times. In fact most of the functions from file on down are sub-Vies. All
sub-Vies are squares, but not all squares are sub-Vies. An easy way of
determining this is by double clicking on the node. If a new VI opens, it is a sub-
VI. Sub-Vies are completely self-sufficient programs, i.e. they can run on their
own. The controls are the inputs and the indicators are the outputs.

Fig. 6 The block diagram

156

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2006 TOME IV. Fascicole 1

How to make a sub-VI:
Write your subroutine with the controls as the inputs and the indicators as

the outputs
Be sure to label the controls and indicators with descriptive and appropriate

labels.

The little icon in the upper right hand corner , is where to make the
node.

We use such a control to implement a cell of the carry completion adder,
can see in figure 6, last part.

The block diagram, figure 6, represents the “back side” of this VI.

The equation use it is: ()
()⎪⎩

⎪
⎨
⎧

⊕+=

⊕+⋅=

+

+

1
iiiii

1
1i

0
iiiii

0
1i

cbabac

cbabac

determinate from the table bellow:
ia ib ic 1ic +

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

From this ecuations result the way to implement with logic gates one cell of this

adder, figure 7.

ia

0
1ic +

is

ib

 1

1ic +

0
1ic +

1
1ic +

Fig. 7. Representation with logical gates of one cell

157

Fig. 8. The principle diagram

CCA

0a 0b

0s

0
0c
1
0c

1
1c 0

1c

CCA

1a 1b

1s 1
2c 0

2c

CCA

2a
2b

1
3c 0

3c 2s

3a 3b

CCA

1
4c 0

4c

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2006 TOME IV. Fascicole 1

 158

In figure 8 is present the principle diagram of this adder. The adder is end when

the output of or logical gate it’s 1 logic.

. CONCLUSIONS

f the
adde

 and tools
for data analysis, report generation, data acquistion and file input/output.

IBLIOGRAPHY

4

This easy aplications can be use to understand the basic knowledge o
rs, how to build a simulation using the LabIEW and how to make a sub VI.
LabVIEW it's used extensively in research and industry. To help in the design

programs, the LabVIEW software provides an extensive library of functions

B

 Francis Cottet, O[1.] ctavian Ciobanu, „Bazele programarii in LabVIEW”. Matrix ROM,

DE;

[6.] http://www.mech.uwa.edu.au/jpt/tutorial/ieindex.html.

Bucuresti 1998;
[2.] http://www.ni.com/labview/;
[3.] http://c.webring.com/hub?ring=labview;
[4.] http://www.iit.edu/~labview/Dummies.html#FORNO
[5.] http://www.eelab.usyd.edu.au/labview/main.html;

