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ABSTRACT: 
In this article we study the generalization of  classic distribution densities to possible 
situations in real cases. The classic distribution densities are truncated, obviously keeping the 
properties of a density. This new expressions of the density, can better approximate the 
experimental data. Further on, we introduced the truncated repartition, accompanied by 
numerical examples. 
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1. INTRODUCTION  
 
The classical  distribution, have the density distribution   2χ
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This distribution wills by approximate white the function  
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For the function ftrunc (x,n,σ ,T) to be a distribution density we impose the 

conditions   
  

                                K(T) > 0  ,  T>0        (3) 
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and  

                        .      (4) ∫
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 Thus we determine expression of the truncate distribution density  
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 We remark the fact that for ∞→T , the function ftrunc (x,n, ,T) coincides with 
the function fclas (x). 

σ

 
 2. PRACTICAL CASE  
 

In the practical case result the next value of experimental date  
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where x represent the value of independent variable, and y represent the value of 
dependent variable.   

The parameters n,  and T will be determined by imposing the condition of 
minimizing the sum of the difference squares between of the value of theoretic 
function ftrunc(x,n,σ ,T) and experimental value of dependent variable y, that is 

σ
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where 
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 Thus we use the next program MathCAD for minimize the function (6) 
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n prg1:=      n 10= T prg3:= T 80=

σ prg2:=   σ 2=

 
Thus, from this program result the value of parameters n,σ  and T.  
These values substituted in relation (4) lead to expression of truncate density 

distribution. 
For this modeling result the value of the correlation coefficient 
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And the standard deviation is 
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The graphic of distribution density is representing in Figure 1.  
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Figure 1. The truncate distribution density 

 
The graphic of truncate repartition function is representing in Figure 2.  
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Figure 2. The truncate repartition function   
 

And the graphic of the truncated characteristic function is represented in 
Figure 3. 
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Figure 3. The truncated characteristic function 

 
We notice that the, for classical distribution density, for the same experimental 

date, per minimizing the sum of the difference squares between of the value of 
theoretic function fclas(x,n,σ ) and experimental value of dependent variable y, we 
obtain the value  
 

n := 8   . σ 2.2:=
 
Thus, for this value substituted in relation (1), we obtain the value of correlation   

coefficient   
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In the case of truncate distribution density, white this value of n and σ , we 
obtain for T the value  T 79.5:=

Thus, if we modeling the experimental date with the function  
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obtain the value of correlation coefficient  
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3. CONCLUSIONS 
 
If we compare the value obtains in tree modeling, results that the best 

modeling is on tree parameters, that is ftrunc (x, n,σ ,T)   
In conclusion this type of modeling is recommendation in any practical 

cases.    
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