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Abstract: 
Considering a sliding boundary layer of two orders in the neighborhood of an unlimited plane 
plaque, we study the distribution of stress in boundary layer. 
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1. Introduction 
 

Let us envisage a fluid stream past a semi-infinite plane plaque with the 
"attack" angle zero. Suppose that the fluid is viscous incompressible while the 
flow is plane (in ). The plane plaque is considered located on the real axis 

, its “attack” edge being atO . 
Oxy

Ox
According to the well known boundary layer approximation (Prandtl), 

the Navier -Stokes equations  
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where , , and ρ p ),( vuvr , are the mass density, the pressure and the plane 
velocity respectively while  is the viscosity coefficient. μ
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To these equations one attaches the boundary conditions  
 

,2

2

11 u),x(u,0)0,x(v),0,x(
y

uM)0,x(
y
uL)0,x(u ∞=∞=

∂

∂
−

∂
∂

=      (4) 

the first one signifying the fact that the fluid slides on the plaque surface (in 
stead of the adherence on the plaque, i.e. of the classical non-slip condition 

). 0)0,( =xu
In a previous attempt we have given a numerical method for 

approaching this problem which is based on a particular polynomial 
development of the velocity profile inside the boundary layer.  

Such sliding boundary conditions have been considered before [1]. 
In the papers [2], [3], [4] and [5] is study the dynamic problem in hypotheses 
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2. Results 
 
By using the expression of  which comes from (3), the above relation (2) 

leads to  
v
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Integrating this integro-differential equation across the boundary layer, 

namely, from  to - the upper border of the boundary layer, we 
get the integral relation, 
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Distribution of non-dimensional velocity in boundary layer is given of the 

expression [2] 
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This expression satisfy the conditions of boundary conditions  
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In this paper, we study the distribution of stress in boundary layer 

considering a velocity profile of a polynomial type (within the boundary layer) 
but this time of higher ( ) degree which seems to be a more accurate 
approach. 

th6

The thickness of the impulse losses  
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has in this case the following form,  
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Figure 1. The distribution of thickness of the impulse  

losses in a section of boundary layer 
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Figure 2. The level lines corresponding 

 
The local tension between two neighboring layers  
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has the expression   
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The local stress on the plaque has the structure  
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Figure 3. Distribution of the stress of friction on plaque 
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Figure 4. The level lines corresponding 

 
Figure 5. Distribution of the stress of friction in layer 

 
Figure 6. The level lines corresponding  
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3. Conclusions 
  

This paper study the influence of two order term on stress of friction from 
boundary condition corresponding to motion of viscous incompressible fluid on the 
plane plaque. 
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