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ABSTRACT:  
In the present article, wave propagation in an isotropic layered thermoelastic plate is studied 
in the context of the generalized theory of thermoelasticity with thermal relaxation time. 
Commencing with analysis of waves projected along the x-axis, at an angle θ  in a heat-
conducting n-layered plate, transfer matrix relating the displacements, temperature, thermal 
stresses and temperature gradient within a layer to its wave amplitudes is obtained. The 
calculation is then carried forward for more specialized case of semi-infinite is absent or 
present. Some special cases have also been deduced and discussed. Applying appropriate 
boundary conditions on the plate outer boundaries a large variety of important physical 
problems can be solved, of these mentioned includes dispersion equation for a uniform free 
plate. Numerical calculations have been presented for a aluminum epoxy composite. 
KEY WORDS: Generalized thermoelasticity, thermal relaxation times, free plate, layered, 
thermal waves. 
 

 
 
1. INTRODUCTION 
 
Thermal effects represent a primary origin of failure for a broad class of 

multilayered devices. Due to different mechanical and thermal properties between 
constituents, temperature changes can introduce residual stresses which may lead 
to interface debonding in ductile materials, or enhance crack formation in brittle. 
Propagation of elastic waves in layered media [4, 13, 19, 23], have long been of 
interest of researchers [1, 6] in the fields of geophysics, acoustics, and 
electromagnetic. Applications of these studies include such technologically 
important areas as earthquake prediction, underground fault mapping, and oil and 
gas exploration, architectural noise reduction. In contrast to elastic waves, only a 
few problems have been attempted for thermoelastic materials in dynamic coupled 
theory of thermoelasticity. Hence the study of thermo-mechanical interactions and 
wave phenomenon in anisotropic materials is justified and is of great importance 
and practical use in engineering applications especially in the context of 
generalized theory of thermoelasticity.  

According to the theory of thermoelasticity, the temperature field is coupled 
with the elastic strain field. The classical theory of thermoelasticity predicts infinite 
speed of transportation, which contradicts the physical facts. Lord and Shulman [20], 
and Green and Lindsay [14] extended the coupled theory of thermoelasticity by 
introducing the thermal relaxation times in the constitutive equations to eliminate the 
paradox of infinite velocity of heat propagation, thus are called generalized theories 
of thermoelasticity. Banerjee and Pao [3] extended this theory to anisotropic heat 
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conducting elastic materials. Dhaliwal and Sherief [12] treated the problem in more 
systematic manner. The works of Ignaczak [18], Hawwa and Nayfeh [16, 17], Green 
and Naghdi [15], Verma [26, 27] contain more detailed discussions on this 
phenomenon. The literature dedicated to such theories is quite large and its detailed 
review can be found in Nowacki [24], Chadwick [7-9] and Chandrasekharaiah [10, 
11].  

Dynamic problems in layered thermoelastic media are complicated than its 
counterpart in elasticity, because in thermoelasticity, solutions to both the heat 
conduction and thermoelasticity problems for all the layers are required. These 
solutions are also to satisfy the thermal and mechanical boundary and interface 
conditions. In the analysis of a layered thermoelastic medium, system of two 
simultaneous equations are to be solved for a large number of unknown constants. 
Bufler [5], Bahar[2] and Verma [28] proposed the transfer matrix method to study the 
isothermal elasticity problems in multilayered medium. Thangjitham, and Choi, [24] 
solved thermal stresses problem in multilayered anisotropic medium. Verma et al. [8] 
studied theoretical development for the multilayered plate with either all rigidly 
bonded interfaces or with one smooth interface and the remaining interfaces rigidly 
bonded is presented in the context of theories of generalized thermoelasticity for a 
plate consisting of an arbitrary number of isotropic layers. 

In the present paper, wave propagation in arbitrary isotropic layered 
thermoelastic plate is studied in theory of the generalized thermoelasticity with 
thermal relaxation time. Commencing with analysis of waves in a heat-conducting n-
layered plate of heat conducting media, the dispersion relations of thermoelastic 
waves are obtained by invoking continuity at the interface and boundary of 
conditions on the surfaces of layered plate. The calculation is then carried forward 
for more specialized case of semi-infinite is absent or present. Some special cases 
have also been deduced and discussed. Applying appropriate boundary conditions 
on the plate outer boundaries a large variety of important physical problems can be 
solved, of these mentioned includes dispersion equation for a uniform free plate. 
Numerical results reveal that at zero wave number limits, each figure displays four 
values of wave speeds corresponding to one quasi-longitudinal, two quasi-
transverse, and one thermal mode. At relatively low values of the wave number, a 
rapid change is seen to take place in the slope of the quasi-longitudinal curve. As 
wave number increases, little change is seen. Curves also demonstrate, how the 
phase velocity varies with angle of propagation θ . Also when the thermal relaxation 
time τ0 → 0, then the results obtained in the analysis reduces to conventional 
coupled thermoelasticity. 

 
2. FORMULATION           
 
The generalized coupled field equations governing dynamic thermoelastic 

processes for homogeneous heat conducting isotropic materials and in the absence 
of body forces and heat source can be written as 

 ( ) Tμ λ μ γ ρ∇ + + ∇∇ − ∇ =u u &&u
)&
                                   (2.1)            

   ,                       (2.2)      2
0 0 0[ ] (eK C T T Tθ ρ τ γ τ∇ + + = ∇ + ∇u u& && & &

where (3 2 ) tγ λ μ α= + ; λ  and μ  are the Lame’ parameters and tα  the coefficient of 
thermal expansion; u  is the displacement vector; T  is the temperature change 
above the uniform reference temperature 0 θ ; ρ  is the mass density; is the 
specific heat at constant deformation; 

eC

0τ  is the thermal relaxation time. Consider a 
plate consisting of an arbitrary number, n, of homogeneous thermoelastic isotropic 
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layers rigidly bonded at their interfaces. We shall assume that a plane wave 
propagates in the x-z plane at an arbitrary angle θ measured from the normal to the 
interface and the use the two sets of two-dimensional coordinate systems (x, z), is 
global coordinate system, which has its origin at the bottom layer of the plate such 
that x denotes the propagation direction and z is the normal to the interfaces. Hence 
layered plane will then occupy the space 0 ≤  z  ≤  d where d denotes the total 
thickness of the plate. The second system is local for each sub-layer of the plate. 
Since the plate is made of n layers, the mth layer will then have its local coordinate 
x(m)  and z(m) with local origin at bottom surface. Hence each layer occupy the 
space 0 ≤ z(m)  ≤  d(m) where d(m)   is its thickness. With this choice of co-ordinate 
system specialize the equations (2.1) and (2.2) for each layer reduce to 
               μ λ μ ρ γ[ ) ( )( ) &&, , , , ,u u u w u Txx zz xx xz x+ ,+ + + = +                                                         

  μ λ μ ρ γ( ) ( )( ) &&, , , ,w w u w w Txx zz xx zz z+ ,+ + + = +                                                                        (2.3)  

                               K T T C T T T u w u wxx zz e x z x z[ ] ( & &&) [( & & ( && && , ), , , , ,+ + + = + + +ρ τ γ τ0 0 0

where τ 0  is the thermal relaxation time, λ and μ are Lame’s constants, γ = (3λ +2μ)αt  
is the thermoelastic coupling constant and  αt the coefficient of thermal expansion 
and all other symbols have their usual meanings as in Lord and Shulman [20]. The 
comma notation is used for spatial derivatives and the superposed dot denotes time 
differentiation. 
 

3. ANALYSIS 
 

Consider the formal solutions for Eqs. (2.1) and (2.2),   
 ,                                     (3.1)     ( sin )

1 2 3( , , ) ( , , ) i x z ctu w T U U U e ξ θ α+ −=
for waves whose projected wave vector is along the x-axis, and for an angle of 
incidence θ, where ξ is the wave number ,  U1 , U2 and U3 are  the constant 
amplitudes related to displacements and temperature T, c is the phase velocity ( = 
ω /ξ), ω  is the circular frequency, α is the ratio of the z and x-directions wave 
numbers. This choice of solutions leads to the coupled equations 

M Umn n( )α = 0    (m, n  = 1,2,3) ,                                             (3.2) 
where the summation convention is implied, and 
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M c11 2
2 2 2ζ= + −α θsin 12 3 sinM c, θα= ,  13 sinM θ= , 21 12M M= , 

              2 2 2
22 2 sinM c θ α ζ= + 23M− , α= , 2

31 1 sinM ε τω ζ θ∗= , 2
32 1M ε τω ζ α∗= ,            (3.3) 

                2 2
33 (sin )M 2θ α ω ζ∗= + − τ ,       c c3 21= − ,   ε

γ
ρ λ μ1

0
2

2
=

+
T

Ce ( )
   

    ω λ μ∗ = +C Ke ( )2 ,τ τ ξ= +( )0 i c , c2 2= +μ λ μ( ) , 2 2 ( 2c )ζ ρ λ μ= + .               (3.4)  
 The existence of nontrivial solution for U1, U2 and U3 demands the vanishing of 
the determinant in Eqs. (3.2), and yields the polynomial equation 

                                    ,                                                    (3.5) α α α6
1

4
2

2
3 0+ + + =A A A

where  
2

22
21

2
21 ]}1)1{(sin3[ cccP ζζτωεθ −−+−= ∗  

2
4

12
22

122
4

22 ]})1(1{sin2})1(1{sin3[ cccccP ζτωεθζτωεθ ∗∗ +++++++−=  

 2
22

2
2222

1
44

3 ]sin}][sinsin)1([sin ccP ζθθζθζτωετζωθ −−+−+= ∗∗  
Solving (3.5) for the six roots of α and using superposition results in the following 

formal solution relating the displacements, temperature, thermal stresses and 
temperature gradient within a layer to its wave amplitudes. 
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, (3.6) 

here  and   are roots of  equation (3.5)  α α1
2

2
2, α3

2

i zq
qE e

ξα
= , E ei x ct= −ξ θ( sin ) ,   q  = 1,2 ...6 

α α1
2

2
2,  correspond to coupled longitudinal and thermal waves whereas  

corresponds to transverse wave which is not affected by the temperature variations 
α3

2

2
2

1 2 2 2sin ,
T

cD c
c

θ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

D c3 22= − sinθ , D c D c D
c c

cT
4 2 1 5 2 2 6

2

3

2

2
22 2 1= = = − +α α

α
θ, , ( sin[ ])  

μ
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D S7 1 1= α ,    D S8 2 2= α ,  cT
2 =

ρ
,   σ

σ
ξzz
zz

i
= ,σ

σ
ξxz
xz

i
= , ′ =

′T T
iξ

.               (3.7)          

 The various parameters , Sα α1 2, , α 3 1, S2, D1, etc. are specialized to the material 
of layer (m) under consideration.   Putting (3.6) in the block matrix form           

                                                           (3.8)          m mF = R Bm

in which  , 1 2 3 4 5 6( , , , , , )A A A A A A=mB ( , , , , , )zz xz T w u Tσ σ ′=mF and is the matrix, the 
elements of which are given explicitly in the (3.6). 

mR

Considering the origin of co-ordinates at the ( 1m − )th interface, the relation 
between the stress, thermal gradient, displacements and temperature 
vector within the m th layer at the (m,m-1F 1m − )th interface ,and the vector   mB

                                        (3.9)          m,m-1 m mF = S B
where is derived from  by putting mS mR 0z =  

Similarly stress, thermal gradient, displacements and temperature vector 
within the th layer at the th interface is m,mF m m

                                                           (3.10)          m,m m mF = U B
where is derived from  by putting mU mR mz H=  
 Using  (3.8) to (3.10),  and  at the upper and bottom surface of th 
layer we can related,  

m,m-1F m,mF m

    where                                     (3.11)          m,m m m,m-1F = G F , m

)

-1
m mG = U S

Using the boundary and continuity conditions  at each interface 
and considering that no slips occurs at the interface. 

( m,m-1 m-1,m-1F = F

On applying (3.11)  to each interface in turns gives  
                              (3.12)          n,n n n-1 1 1,0 1,0F = G G ...G F = GF

Free layered plate: If the semi-infinite medium is absent, consider a free layered 
plate. The characteristic equation for such a situation is obtained by invoking 
( zz xz Tσ σ ′= = = 0) stress-free as well as thermally insulated upper and bottom 

surfaces. Partitioning the 6  matrix G into four 6× 3 3×  sub-matrices etc., and 
partitioning the vector conformably 

(1) (2)G ,G
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 We obtain the characteristic equation as (3.12)        

                                 (3.13) { } { }{ } { } { }{, 1
0,0,0 , , , 0,0,0 , , ,

n n
w u T w u T

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

(1) (2)

(3) (4)

G G
G G

} ,0

that is    
                       { }1,0

, , 0w u T =(2)G                                                   (3.14) 

and 
                 { } { },

, , , ,
n n

w u T w u T= (4)G
1,0

                                (3.15) 

If { }1,0
, ,w u T  is not to be null, therefore,  must be singular, that is   (2)G

  det( ) 0=(2)G                   (3.16) 

The elements of are functions of the elastic thermal constants and thickness 
of the layers. Equation (3.16) is the desired dispersion equation in the generalized 
theory of thermoelasticity. The numerical values of det( ) can be computed by 
the successive multiplication of the matrices  for each layer, and equation (3.16) 
can be solved by applying a suitable iterative method. 

(2)G

(2)G
mG

Semi-infinite medium: 
If the Semi-infinite medium is present, then the problem reduces to that of a 

layered half space, pre-multiplying (3.12) by  gives -1
n+1S

                        (3.17) -1
n+1 n+1 1,0 1,0B = S GF = JF

where . -1
n+1J = S G

The conditions on the semi-infinite medium are that there be no sources at 
infinity and this implies that φ ,ψ and are expressible in terms of T exp( )i zα− and 

3exp( )zα− , respectively , i.e. 1 2 3 4 5, ,  and A A A A A A6= = =

}

. Again partitioning into 
four  sub-matrices 

J
3 3×

                            (3.18) { } { }{ } { } { }{1 2 3 1 2 3 1,0
, , , , , 0,0,0 , , ,A A A A A A w u T

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

(1) (2)

(3) (4)

J J
J J

so that if   is not to be null, must be singular. The dispersion equation for 
layered half space is therefore 

(2) (4)J J−

    det ( ) = 0           (3.19) (2) (4)J - J
Eq. (3.19) is to be solved with some iteration process, when this has been done; the 
displacement ratio on the top surface is given by  

   { }, , 0w u T⎡ ⎤ =⎣ ⎦
(2) (4)J - J                       (3.20) 

and the displacements, temperature ,stresses, and thermal gradient, at other depths 
can be obtained as for the free plate. 

In both the half-space and free plate problems, the dispersion equation involves 
only the last two columns of J  orG , and there is no need to compute more than this. 
Further, the dispersion equation for a half space involves the matrices . This 
can be obtained directly by pre-multiplying by the matrix 

(2) (4)J - J
J

   2

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

I I
I

I I
                                                        (3.21) 

in which  represents a 3  unit matrix. Thus I 3×

            .                      (3.22) 
1 3

1 3

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

( ) ( ) (2) (4)
-1

2 2 n( ) ( ) (2) (4)

J - J J - J
I J I S G G ...G

J - J J - J +1 n n-1 1
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Finally,  
⎡ ⎤ =⎣ ⎦

(2) (4)
n+1 n 1J - J M G ...E  

in which is  matrix formed by the top three rows of and is n+1M 3 6× -1
2 n+1I S 1M 6 3×  

matrix formed by the last three columns of . With this modification, the dispersion 
equations both for free plate and a half space involve only a 3 matrix and only 
this part of this matrix need to be computed. To make sure on these equations, it 
may be noted that they yield the dispersion equation for a uniform plate in the form 

1E
3×

     0⎡ ⎤ =⎣ ⎦
(2)G                                                              (3.23) 

which is in agreement with the exiting solutions by [30] for thermoelasticity and for 
elasticity Abubakar [1] when coupling constant is zero. Similarly, the dispersion 
equation for a medium half-space reduces to the usual Rayleigh wave equation 
Verma and Hasebe [30]. 
 

4. DISCUSSION AND NUMERICAL ILLUSTRATION 
 
In this section, the numerical calculations are carried out to present phase 

velocity dispersion curves plotted as a function of the wave number assuming the 
thickness ‘d’ of the plate is fixed. These curves have been calculated from expression 
based on the dispersion relation in equation (3.23). The material chosen for this 
purpose of numerical evaluation is Aluminum epoxy composite. The physical data for 
such materials is given as 

λ = 7 59. ×1011 2dynes cm                    μ = 189. ×1011 2dynes cm  

K = 0 0149. ×1011 2dynes cm                 ρ = 219 3. gm cm  

C cal Ce = 0 23 0.                                         ω 1 4 36= . ×10  13 s -1

ε 1 0 073= .                                                      τ 0 = 6.131 ×10 . -3 s
The analytical results (3.23) may further be simplified, once the number of layers, 

their properties, and geometric stacking are specified, and then one can present 
numerical results in two categories. In the first, variations of phase velocity with 
function of the product of frequency and unit cell thickness, for specified angle of 
incidenceθ , and secondly the phase velocity with the angle of incidence θ  for 
specified wave number.  

In FIGURE (1), close examination of these figures reveals several interesting 
features. At zero wave number limit, each figure displays four values of wave speeds 
corresponding to one quasi-longitudinal, two quasi-transverse, and one thermal 
mode. At relatively low values of the wave number, a rapid change is seen to take 
place in the slope of the quasi-longitudinal curve. As wave number increases, slight 
change is observed.  

In FIGURE (2), when the thermal relaxation time τ0 → 0, then the results obtained 
in the analysis reduces to conventional coupled theory of thermoelasticity. 

In FIGURES (3)-(5), explicit dependence of such curves on the propagation 
direction θ (measured from the normal to the surface of the plate) are given in for 

 mm51.10ξ −= -1  , 2.5 mm-1  and  4 mm-1  respectively is demonstrated when thermal 
relaxation time is equal to.001. 
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Figure 1. Dispersion curves for corresponding to antisymmetric modes (lines) and symmetric modes (dots) 
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Figure 2. Dispersion curves for corresponding to antisymmetric modes (lines) and symmetric modes (dots)  

when τ0 trends to 0 
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Figure 3. Variation of phase velocity of different modes with propagation angle when wave 

number is equal to 0.00001 mm-1 and thermal relaxation time = 0.001 
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Figure 4. Variation of phase velocity of different modes with propagation angle when wave 

number is equal to 2.5 mm-1 and thermal relaxation time = 0.001 
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Figure 5. Variation of phase velocity of different modes with propagation angle when wave 

number is equal to 4 mm-1 and thermal relaxation time = 0.001 
 

These curves demonstrate how the phase velocity varies with angle of 
propagation θ  and when angle varies from θ  = 00 to θ  = 1800 degrees. It is observed 
that phase velocity changing pattern divided into the three blocks from θ  = 00 to θ  = 
65.710, second from θ  = 65.710 to θ  = 131.8170 and the third from θ = 131.8170 to θ  = 
1800. Thus, curves as a function of wave number and hence display and 
demonstrate wave front dispersion behavior in generalized thermoelasticity. 

 
5. CONCLUSIONS 
 
Problem of thermoelastic wave propagation in multilayered media in the 

context of generalized thermoelasticity is solved. Analytical expressions have been 
derived that are easily adaptable to numerical illustrations for a thermoelastic plate 
consisting of an arbitrary number of layers, each layer possessing isotropic symmetry 
is chosen as a representative cell of medium.  It is observed that at zero wave 
number limits, each figure displays four values of wave speeds corresponding to one 
quasi-longitudinal, two quasi-transverse, and one thermal mode. At relatively low 
values of the wave number, a rapid change is seen to take place in the slope of the 
quasi-longitudinal curve. As wave number increases, little change is seen. Curves 
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also demonstrate, how the phase velocity varies with angle of propagation θ . Also 
when the thermal relaxation time τ0 → 0, then the results obtained in the analysis 
reduces to conventional coupled theory of thermoelasticity. 
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