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Abstract: The aim of this article is focused on providing numerical simulation for system of first 
order Cartesian robot arm problem using the Novel Dormand and Prince Algorithm. The 
parameters governing the arm model of a robot control problem have been discussed 
through Novel Dormand and Prince Algorithm. This paper emphasizes an efficient numerical 
solution for the control logic and system dynamics of a robot arm having three cartesian axes 
plus two rotational axes of the wrist. Several numerical techniques are used and their results 
are compared for the integration of the nonlinear differential equations for the individual 
axes. Many system parameters are discussed for the simulated motion and are adjusted to fit 
experimental data on the actual arm motion. The précised solution of the system of 
equations representing the arm model of a Cartesian robot has been compared with the 
corresponding approximate solutions at different time intervals. Results and comparison show 
the efficiency of the numerical integration algorithm based on the absolute error between 
the exact and approximate solutions. It is observed that Novel Dormand and Prince Algorithm 
is efficient and takes less CPU time compared with RK-Sixth order algorithm. 
Key-words: Novel Dormand and Prince Algorithm, Different Numerical Integration Techniques, 
Ordinary Differential Equations, System of Equations of First Order, Cartesian robot arm 
problem. 
 
 
 

1. INTRODUCTION 
 
Extensive research work is still being carried out on variety of aspects in the field of 

robot control, especially about the dynamics of a robotic motion and their governing 
equations. The simulations of the dynamics of Cartesian robot arms are found in the 
literature Astrom,K.J, (1983), Derby,S, (1983), Orlandea,N and Berenyi,T. (1981), Walker,R.K, 
Gregory,C and Shah.S. (1984) and Nelson, W.L and Ghang, J.D. (1984) Research in this 
area is still active and its applications are enormous. This is because of its nature of 
extending accuracy in the determination of approximate solutions and its flexibility. 
Because of the-linear and coupled characteristics nature, the design of a robot control 
system is made complex.  

Runge-Kutta (RK) techniques are being applied to compute numerical solutions for 
the problems, which are  modeled as Initial Value Problems (lVPs) differential equations 
by Alexander and Coylc (1990), Evans (1991), Hung (2000), Shampine and Watts [9-
10].Runge-kutta techniques have become very popular, both as computational 
techniques as well as subject for research, which were discussed by Butcher, J.C. (1964), 
Butcher. J.C. (1987) and Butcher, J.C. (1990), Shampine(1975) and Shampine(1977). This 
technique was derived by Runge-kutta and extended by Kutta to solve differential 
equations efficiently which are equivalent of approximating the exact solutions by 
matching ‘n’terms of the Taylor series expansion. 
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Butcher, J.C. (1964), Butcher. J.C. (1987) and Butcher, J.C. (1990), derived the best 
RK pair by all statistical measures appeared to be the RK algorithm and also an error 
estimate was given. The RK-Butcher algorithm is nominally considered sixth order since it 
requires six function evaluations, but in actual practice the ‘working order’ is five but still 
exceeds all the other algorithms examined including RK-Fehlberg, RK-Centrodial mean 
and RK-Arithmetic mean. 

Bader (1987) and Bader (1998) introduced the RK-Butcher algorithm for finding the 
truncation error estimates and intrinsic accuracies and the early detection of’ stiffness in 
coupled differential equations that arises in Theoretical Chemistry Problems.  

Mohsen et al., (2004) have proposed an observer-based control strategy and 
investigated on Cartesian robot arm problem with theory and practice. Also, the 
feasibility of the controller is validated through both numerical simulations and 
experimental testing. Significant matching between experimental results and numerical 
simulation is observed.  

Jindong Tan et al., (2004) have discussed about the coordination of multi-robot and 
human systems in a perceptive reference frame. Dana Petcu et al., (2005) constructed a 
performance model for parallel iterative numerical techniques under the assumption of 
a message-passing computing system. Also they have proved the inefficiency of the 
explicit iterative techniques for ordinary differential equations on distributed memory 
multiprocessor systems.  

Zanariah Abdul Majid (2006) have developed the two-point fully implicit block 
techniques for solving large systems of ordinary differential equations (ODEs) using 
variable step size on a parallel shared memory computer. The technique calculates the 
numerical solution at two equally spaced points simultaneously within a block. The 
stability of the techniques is also investigated.  

A new family of extended Runge–Kutta formulae has been presented by Xinyuan 
Wu and Jianlin Xia (2006). It is assumed that the user will evaluate both f and f′ readily 
when solving the autonomous system y′=f(y) numerically. Liu et al., (2007) has discussed 
about the stability of Runge-Kutta techniques in the numerical solution of linear impulsive 
differential equations. 

Foroush Bastani and Mohammad Hosseini (2007) have presented a new adaptive 
time stepping algorithm for strong approximation of stochastic ordinary differential 
equations and employed two different error estimation criteria for drift and diffusion 
terms of the equation, both of them based on forward and backward moves along the 
same time step.  

A construction of continuous extensions to a new representation of two-step 
Runge–Kutta techniques for ordinary differential equations has been discussed by 
Bartoszewski and Jackiewicz (2007). This representation makes possible the accurate and 
reliable estimation of local discretization error, facilitates the efficient implementation of 
these techniques in variable stepsize environment, and adapts readily to the numerical 
solution of a class of delay differential equations.  

John Butcher (2007) has introduced general linear techniques as the natural 
generalizations of the classical Runge–Kutta  and linear multistep techniques. A survey 
of general linear techniques is also presented, including recent results on techniques with 
the inherent RK stability property.  

B.Min,W.J..Lee and N.Park (2000) discussed about the fast numerical techniques for 
solving non-linear differential equations have been proposed and they are based on a 
fixed constant step size say the average-power analysis (one step technique). 
Hodgkinson (2004) discussed average power step technique and Liu (2003) discussed the 
four step technique but the automatics step-adjustment technique has the capacity for 
automatic step-size control based on the Runge-Kutta-Fehlberg formula. Liu (2003) 
implemented a adaptive step-size control requires stepping algorithm return information 
about its performance-most importantly, an estimate of its truncation error because it 
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shares the stage information, the embedded fourth-fifth-order Rungee-Kutta-Fehlberg 
technique. 

Based on the Dormand-Prince (1980) formula, a fast, effective and efficient 
technique is used which can implement automatic step-size adjustment to solve non-
linear differential equation. Simulation results show that (i). The CPU time of the novel 
technique is smaller than that of the DP technique (ii). The novel  Dormand and Prince 
technique reduced the running time by more than two orders of magnitude in 
comparison with the other techniques and (iii). In comparison with the DP technique the 
novel technique can increase the computational speed while solving the non-linear 
equations. In the present paper, the Cartesian robot arm problem is solved with different 
approach using the algorithms such as Explicit Euler, RK-Gill, RK-Fifth, RK-Sixth order and 
Novel Dormand and Prince Algorithm to yield higher accuracy, with less error. 

The importance of numerical simulation (virtual) study is that it is possible to try 
experimental control algorithm without the danger of hurting the robot or personnel. In 
addition to the above the numerical simulator accurately reflects a robotic dynamics 
nature. 
 

2. DIFFERENT NUMERICAL INTEGRATION TECHNIQUES 
 
2.1. RK-Fifth Order Algorithm 
The Fifth Order Runge-Kutta algorithm is an explicit technique and discussed by 

Morris Badder (1987,1988). It starts with a simple Euler technique. The increase of the state 
variable x
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where f(.) is computed according to (1).  
 

2.3. Novel Dormand and Prince: A Fifth Order Technique   
On the basis of the Dormand Prince (1980) formula a novel technique is carried out  

where the fifth-order technique uses six function evaluation at each time step. The novel 
Dormand and Prince algorithm is an explicit exponential technique introduced by 
Xueming Lie (2005). The increase of the state variable x
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where f(.) is computed according to the given function. 
 

2.4. Novel Dormand and Prince: A Sixth Order Technique  
The Novel Dormand and Prince Sixth order algorithm discussed by Xueming Lie 

(2005) is an explicit exponential technique introduced by Dormand and Prince uses 
seven function evaluation at each time step. The increase of the state variable xij is 
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Therefore, the final integration is a weighted sum of the six calculated derivatives 
which is given below. 
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where f(.) is computed according to the given function. 
 

3. CARTESIAN ROBOT ARM MODEL AND ESSENTIAL OF VARIABLE STRUCTURE 
 
3.1. Working Principle and Description of Cartesian Robot Arm Dynamics 
The AID 600 robot arm has Cartesian xyz axes of motion, together with a wrist two-

axis revolute pitch and roll motion. The compass reading of these axes with respect to 
the robot arm is shown in the Figure 1. The gross dynamics of the robot arm can be 
simplified by assuming the xyz axes uncoupled and the wrist a constant-mass payload 
with negligible coupling effects, allowing the individual axes to be simulated 
independently of each other. The existing program considers the x axis; appropriate 
substitution of constants can yield models for the y and z axes. 

The system block diagram for one of the robot axes is given in fig. 2 where the 
elements containing a ”D” denotes delay. In that, Jm represents the moment of inertia of 
the axis servo-motor, and Bm represents the motor damping. The linear dynamics of the 
robot axis can be described by the two state variables position, y  and velocity y0 1. 
Because, the effects of motor gear backlash are to be investigated, the nonlinear effects 
of the coupling and uncoupling of the rack and pinion system of the arm and motor 
gear are described with two additional variables.(i) Gear angle y2 and (ii). Gear angular 
velocity y3 with the drive force transmitted through the stiffness and friction of the gear 
train when the teeth are in contact. 

Within the voltage saturation limits, the driver acts as a controlled current source 
with transconductance Ki, as maintained by a current feedback loop in the controller 
circuitry. When the motor reaches the voltage saturation limit, it can be characterized by 
a single-pole inductance-resistance model with a back EMF proportional to the motor 
angular velocity. The motor is driven by a controller with an input for a reference (set-
velocity) voltage, and an inverting input for a tachometer feedback voltage. The 
controller has a switching mode power drive unit, preceded by a preamplifier consistng 
of a lag-lead (pole-zero) compensation network, an overall frequency rolloff at about 
1000 HX, and an output voltage limit VL. The preamplifier’s two poles and one zero can 
be described by the linear combination of two auxiliary state variables, y  and y4 5. The 
nonlinear dynamics of the motor-controller are represented by the motor current, which 
is the state variable y6.
 

3.2 Working Principle and Description of Slave Control Unit: 
The AID 600 slave control unit calculates the set velocity voltage for each 

movement axis in the high-level commands software, using information from position and 
speed-schedule inputs, (marked as ‘track’ data input in Fig. 2) plus feedback data from 
optical encoder on the motor shaft. The set-velocity voltage output is modeled as a 
sample-data device of period 5 ms. The input of new track data from the master control 
unit occurs at 80 ms intervals. The control logic used in the slave control unit is a 
combination of position, velocity, and integrated position functions, as shown in the 
lower portion of Fig. 2. The dynamics of the closed-loop control system for a single axis of 
the robot arm motion is represented by the seven state variables which are shown in the 
table 1. 
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Table 1. Seven State variables 
Seven State 

Variables 
Description and Units 

y arm position (m.) 0

y arm velocity (m/s.) 1

y motor angle (rad.) 2

y motor velocity (rad/s.) 3

y controller preamp. variable 1 (volts) 4

y controller preamp. Variable 2 
(Volts/s.) 

5

y motor current (amps.) 6

Figure 1. Robot arm axes of motion 

 
Figure 2. System Block Diagram for one axis of robot arm 

The following table 2, shows the four auxiliary variables which are functions of the 
state variables.  

Table 2. Four auxiliary Variables 
Auxiliary Variables Description and specific Units 

f force coupled through the gear drive in Newtons (N) g

F the static friction force (N) s

V the motor voltage m

V the controller preamplifier output voltage c

 
In terms of seven state variables, the differential equations of motion are given by, 

10 yy =& 32 yy =&MfFyBy gsa /)( 11 +−−=& mbggm JykfryBy /)( 633 +−−=&, , ,  
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54 yy =& abam LyKyRVy /)( 366 −−=&rptrp TTykKUkyTTyy ))(( 321545 −++−−=&, ,    (10) 
where Ba represents the viscous friction coefficient and M is the mass of the arm-rack 
mechanism; B  represents the rotational friction coefficient, m is the inertia, Km b represents 
the torque constant of the motor, and rg represents the radius of the pinion gear. The 
controller parameters are the compensation pole time constant, Tp high frequency roll 
oft time constant, T
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r, and the signal 1and 2 input gains, K  and K1 2. The controller inputs are 
the set-velocity voltage, U(t) and the tachometer feedback voltage, which is Kt times the 
motor angular velocity y (t). 3

The controller preamplifier output voltage is given by,  

Lczc vvyTyv ≤+= ,54                  (11) 
As indicated in Fig. 2, the motor voltage is proportional to the preamplifier output 

minus the current feedback. 

Mmicem vvKyvKv ≤−= ,/( 6                           (12)                                                  
 represents the forward gain of the power unit and Kwhere Kc i represents the 

conductance of the current feedback path. If K Mm VV ≤e is sufficiently large, and   then 
the controller acts as a transconductance amplifier with the current, y   K≈ V6 i c.  However, 
the equation for  in (10) and the voltage equations (11) and (12) with their limit 
conditions are necessary to adequately simulate the nonlinear conditions which 
generally prevail in the controller during arm movements. 

6y&

The gear coupling force is determined by the coupling stiffness, kg, the coupling 
friction coefficient, bg, and the difference between the position of the pinion gear and 
the rack relative to the backlash distance, H. Let the pinion-rack position difference be 
denoted by x. 

02 yyrx g −=            (13) 
Then the coupling force is given by, 
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The axis-load friction has two components. First, a viscous friction proportional to 
velocity, which is reasonably well modeled by the linear force, B ya 1 and second, a static 
friction, Fs which is modeled as a force doublet in the region of zero velocity. 

⎭
⎬
⎫

⎩
⎨
⎧ <

=
otherwise

vyyF
Fs 0

],sgn[ 110          (15) 

where v is the threshold velocity level at which the static friction component disappears. 
The set of Equations (9)-(14) from the basis for the nonlinear dynamics of each axis 

of the robot arm motion simulated in the computer program for this study. If the backlash 
gap, H, and the static friction, Fs were negligibly small, and the gear coupling stiffness, kg, 
voltage limits, VL and VM, and gain, Ke, were arbitrarily large, the nonlinear, seventh-order 
system represented by Equations (9)–14) reduces to a linear, fourth-order system. In this 
case, the controller power stage is replaced by a current source, y  = KV6 i c and the gear 
linkage and axis load (see fig. 2) are replaced by an equivalent loaded motor inertia, J, 
and rotational friction coefficient, B, given by 

;, 22
agmgm BrBBMrJJ +=+=          (16) 

and the output position and velocity are simply gear radius, rg times the motor angular 
position and velocity. This approximation model was used in part of the testing phase of 
the study, described in the next section. However, nonlinear effects of the gear backlash, 
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static friction and especially the saturation limits, have a significant effect on the 
dynamics of the arm movement; hence the inclusion of these nonlinearities in the 
simulation is important for reasonably accurate representation of the actual arm 
movement. 
 

4. NUMERICAL SOLUTION TO CARTESIAN ROBOT ARM MODEL PROBLEM: A COMPARISON 
 
The state variable differential equations (10) are integrated using Novel Dormand 

and Prince Sixth order algorithm and RK-Sixth order algorithm. The following x-axis 
parameters used in the program were provided by manufacturers pecifications (1978) 
and data provided by engineers at Automatirx, Inc.: 

Table 3. X-axis Parameters and Specifications 
Parameters/Symbol Description Units 

R Armature resistance 0.56 ohms a

L Armature inductance 0.00235 henries 
K Motor torque constant 0.289 volt sec/rad b

K Motor torque constant 0.289 N m/amp b

J Armature inertia (no-load) 0.000847 N m sec2m

B Armature damping 0.000733 N m sec Bm

K Tachometer gain 0.0668 volt sec/rad t

r Motor gear radius 0.00573 m g

H Gear backlash 0.00001 m 
M Arm mass 146 kg 

Table 4. System Parameters and Specifications 
Parameters/ Symbol Description Units 

T Compensation zero time constant 0.00705 sec z

T Compensation pole time constant 0.0071 to 4.74 sec p

T Preamp roll off time constant 0.000159 sec r

K  Set velocity gain 0 to 3333 1

K Tachometer feedback gain 80 to 870 2

K Transconductance gain 3 amps/volt i

V  Motor voltage limit 95 volts M
 

The remaining system parameters needed for the simulation are the arm and gear 
tooth friction coefficients, the gear tooth spring constant and the actual values of T , Kp 1, 
K and V2 L in the controller. The values of these parameters are estimated by comparing 
the simulation results and actual measurement on the individual axes of the robot arm, 
using an accelerometer mounted on the arm by Jensen and Nelson and Ghang (1984) 
along with tachometer and controller test-point measurements. The validity of some of 
the other system parameters can also be examined using the same procedure. 

The controller parameters are used to establish the desired set-velocity responses. 
They  are the time constant Tp, of the pole in the lead-lag compensation network; the 
set-velocity gain k1, and the feed back velocity (tachometer) gain K2. The procedure 
recommended in the servo controller manual (1978) is to set the gain K2 at its maximum 
(870), then adjust the gain K1 to give the desired steady-state velocity gain. For the x-axis, 
for example, the desired value is 1 m/sec for 10 volts on the signal 1 input. The time 
constant, Tp is then adjusted to give an acceptable transient response. For the x-axis test 
runs, the gain K  was automatically computed as a function of K1 2 maintains the desired 
steady-state gain of 0.1 m/sec per volt. Linear system check is one of the program 
validation tests, where the nonlinear factors in the simulation program were removed (i.e. 
no saturation, static friction, or backlash and ideal gear coupling). The step response 
from the linearized simulation is compared with the step response obtained analytically 
from the transfer function of the linear system. Thus, the simulation results are agreed with 
the analytical results which is shown in fig. 3 for two values of time constant Tp. The lower 
plot indicates that the linear step response can be made to reach the steady-state value 
in about 0.03 seconds. However, the motor current required for this rapid response has a 
peak value more than 40 times the rated peak current for the motor. Thus, saturation 
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limits will preclude this rapid, linear response. A second set of runs was made using the 
saturation, backlash, and other parameter values as given in the above list. The gain K2 
was set at 870, which required a value for K1, of 1014 for the desired 1 rn/sec steady-state 
velocity. The time constant, Tp was then reduced in a series of steps from the maximum of 
4.74 sec to a value of 0.04 sec., where a transient response similar to the desired response 
specified in the controller manual (1978) was obtained. Plots of the simulated x-axis 
position, velocity, motor angular velocity, current and voltage, and gear force, for Tp = 
0.04 sec are shown in Figure 4. 

It can be observed that the motor current is at the limit value for most of the 
transient part of the velocity step response, and that as the velocity reaches the 1 m/sec. 
set-velocity, the current transient changes to a more rapid "ringing" transient which 
decays to the proper steady-state value. For the system parameters used in these test 
runs, the "ringing" transient decays at an undesirably slow rate if Tp, is reduced below 
about 0.04 sec. The initial slope and time constant of the arm velocity for the exponential 
rise to the set velocity value are predominant governed by the saturation current level 
arm friction, respectively. The “ringing” transient in force during this portion of the 
response is predominantly governed by the gear stiffness and friction. By matching the 
arm velocity and acceleration output of the simulation program with velocity and 
acceleration data derived from an accelerometer mounted on the arm, reasonable 
estimates for these parameters were obtained. For example for the x-axis, the values 
which give a good match with Novel Dormand-Prince Sixth order Technique  and RK-
Sixth order technique when the motor current is not at the saturation limit, the response is 
affected by the overall closed-loop characteristics of the system components. Fig.5 
shows the actual and simulated arm position and velocity patterns for a programmed x-
axis movement of 1 meter and a set-velocity level of 0.9 rn/sec. The control parameters 
in the slave processor unit (see Fig. 2) have been adjusted in the simulation program to 
match those in the actual system. It can be seen that there are some minor differences 
in some portions of the response patterns, it appears that the simulation represents the 
basic characteristic of the robot arm movement. 

Table 5. Various matching parameter values and % estimation 
Parameters/ Novel Dormand-

Prince  Technique 
RK-Sixth Order 

Technique Description Symbols 
V Controller Preamp. Limit 2.783 Volts 2.77 volts L

l Saturation Current (=K V ) 8.125  amp 8.0 amp M i L 

B Arm Friction Coefficient 211 N Sec/m 212 Nsec/m. Ba

b Gear Friction Coefficient 1500 N Sec/m 1500 N Sec/m g

K Gear Stiffness 5.264*10
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g 6 N/m 5.275*106N/m 
 

The influence of various step sizes on the relative percentage of the CPU time is 
examined for all the problems. It can be treated as a measure of the effort necessary to 
obtain higher accuracy solution from the less accurate step size. The difference between 
current CPU time and prior step sizes is expressed as a relative percentage which is given 
below: 

100*)(Re ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= prior

priornew

CPU
CPUCPUabsCPUoftermsindifferencelative  

where CPUnew and CPUprior represents the CPU time required for simulation of robot arm 
motion with specified step sizes. The percentage estimate is made for Novel Dormand 
and Prince Sixth order technique, RK-Sixth order algorithm under various matching 
parameter values as specified in table 5. 

The relative differences in terms of CPU time for execution by Novel Dormand and 
Prince Sixth order technique is better in comparison with RK-Sixth order algorithm. In fig. 5, 
arm position and velocity time takes for the X-axis movement, predicted by numerical 
simulation of Novel Dormand and Prince Sixth order algorithm closely follows actual arm-
movement obtained by the integrated accelerometer data. i.e. a linear model is 
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sufficient for simulating robot arm movement. Therefore, it is observed that, for simulation 
studies of Robot arms, Novel Dormand and Prince Sixth order technique is efficient and 
takes less CPU time proving to be a better choice when compared to other schemes. 

 
Figure 3. Comparison of simulation output (dots) and analytic solution (solid lines) for step 

response of linear system for two values of the compensator time constant Tp. 

 
Figure 4. Arm Position and Velocity time traces for x-axis movement of 1 meter set-velocity = 1 

meter/sec.  Solid line is the integrated accelerometer data for actual arm movement; a 
dotted line shows the simulated output. 
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Figure. 5 CPU time of the Novel Dormand and Prince  

Sixth order technique and RK-Sixth order technique: A Comparison 
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5. DISCUSSIONS AND CONCLUSION 
 
The present article sheds some light on two higher order numerical integration 

algorithms involved in Cartesian robot arm model problem. It is pertinent to pin-point out 
here that the obtained discrete solutions for the Robot Arm model problem using the RK-
Sixth-order algorithm guarantee more accurate values compared to the RK-Fifth order 
technique. From the simulation results and from the graphical, it is observed that the 
so1ution obtained by the Novel Dormand and Prince Sixth order  algorithm match well 
with the exact solutions of the Cartesian robot arm model problem in term of accuracy 
and less CPU time but the RK-Sixth order technique yields a little error because of the 
Taylors series. Hence, the Novel Dormand and Prince sixth order technique is more 
suitable for investigating the system of first order Cartesian robot arm model problem. 
When we make a work comparison with the, Novel Dormand and Prince Sixth order 
algorithm is efficient and takes less CPU time.  

Furthermore, Novel Dormand and Prince Sixth order technique is stable because it is 
based on the exponential series algorithm. Hence, one can compute the numerical 
results for any length of time using Novel Dormand and Prince sixth order technique. This 
fact has motivated us to do further investigations in computing numerical solutions of 
industrial applicable problems of system of second order equations. The outcome of 
these results will form a subject of our forth coming paper. 
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