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ABSTRACT:

Most of the theories examining a stability problem of the zero solution are based on the
Lyapunov stability and instability theoremes. This study presents theoretical considerations upon
a method to observe the behaviour of the zero solution of a linear vector differential
equation by studying the sign of the eigenvalues for the system matrix. A numerical example
is considered and analyzed.
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1. INTRODUCTION

A problem that has been oftentimes addressed in the stability theory (1, 2, 3)
is the study of the stability of an exact solution for a given differential equation. The
Section 2 presents how this problem can be reduced to the study of the zero-
solution of that differential equation. For this aim it is necessary that the differential
equations shown as vectors, having the form X = K1,x), to be defined on cylinders

like R«xG, where G represents a domain of R, conventional noted X, as appears
below. A numerical example is analyzed in Section 3 and Section 4 concludes the

paper.
2. METHODOLOGY

In the case under consideration, we shall assume that the origin 0 of X belongs
to G, for the reason that the differential equation must admit the zero-solution x = 0.
An efficient method to find if the zero-solution of a linear vector differential
equation is stable or unstable is to study the sign of the eigenvalues of the system
matix.
let t - A : J < R ->M(n, C) be a continuous function. The differential
equation
X = Ax M
where the unknown function t — x(t) is a vector function x : J — X, is called a linear
vector equation of first order or differential homogeneous system.
Let assume that (to, x0)e J x X, then the Cauchy problem
X = Ax , x(fo) =x° @)
can be associate with the differential equation (1).
PROPOSITION 1 (that defines the structure for the solutions of the equation)
The function t— x(t) represents a solution for the equation (1) if and only if
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x(B) = Mt pi(t) + €'t pa(t) + ... + Xt p(®)

for any teR, where p; :R — X, j =1, 2...k are polynomial vector functions of grade less
than
ni— 1 and X = &' pi(t) are solutions for the equation (1).
Proof:

Let t— x(®) be a solution of the equation (1). We denote x0 = x(0). Due to this,
the vector x0 has a unique representation as x0 = x0+ x%+...+x% . For x(1) is the unique

k
solution of the Cauchy problem (2), we have that x(H=e"x" =>" "X’ . where

=

x(H= e”x°; are obviously solutions of the equation (1).
Let y(H= e’ x(H= e “"x%; . Hence, by successive differentiation we obtain
d”

at”
a grade less than n; — 1. This will be denoted by pj(f), hence the solution x(1) can be

yj(f): (A—/ijl)”’ yj(f): 0. This means that yj(f) is a polynomial vector function of

written in the form asked by the proposition.

Conversely, it is known that the set of solutions of equation (1) is a linear space
and the formula given by the discussed proposition is a solution of equation (1).

The considered X space has exactly one decomposition in directly sum of
three liniar subspaces, as follows.

We denote by 6(A) the spectrum of matrix A, such that

6-(A)={Lec (A)IRe(M) <0} 3
co(A) ={Aec (A)IRe(X) =0} @
6+(A) ={Aec (A)IRe(M) >0} ©®

We denote, as well, by
X =@ ker(A-ADy , for Aeoc(A) the stable subspace
Xo=® ker(A-NDy |, for Aeco(A) the central subspace
Xe=@ ker(A-A Dy, for Aeo:(A) the unstable subspace
The relation X =X. & Xo @ X+ exists in consequence.

THE STABILITY THEOREM FOR LINIAR VECTOR EQUATION OF FIRST ORDER
(@) If 6+:(A) #2, then the solution x = 0 of equation (1) is unstable.
(b) If o+:(A) =, then:
(b1) If o(A) = o.(A). then the solution x = 0 of equation (1) is asymptotically stable.
b2) If oo(A) # & and the multiplication order of at least one eigenvalue of co(A) is
greater than 1, then the solution x = 0 of equation (1) is unstable. If the multiplication
order for all eigenvalues of co(A) is equal to 1, then the solution x = 0 of equation (1) is
stable but it is not asymptotically stable.
Proof:
(o)) If there exists A; such that Re(\)>0, it follows that

| e x9 || = eRe®t [| xG|| o0, fOr t—s00

Since x1) = e’ x9 is a solution of equation (1), for any eigenvector x9 of matrix
A, proper of the eigenvalue 2, it may be noted that there exists unbounded solutions
of the equation (1), thus the zero-solution is unstable.
(1) Considering that Re(\)<0, for every N e o(A), based on the solution
representation formula given by Proposition 1, it follows that
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[t X% = Hﬁ e pj(f){
J=1

Sle'p -2 prl—=0  ©
J= =

for every input data feeR and xPeX. Thus the zero-solution of equation (1) is
asymptotically stable.
(2) Every solution of equation (1) has the form x() = x(f) + xo(t), where x() eX-
and xo() e Xo. The result x. () — 0 pentru t—« follows from the (b1) proof. It is relevant
to remark that

XM= ™ p,mh= > x®h %)

Ae op(A) Aeap(A)

where p, are polynomials of n; -1 grade (where n, is the multiplication order for the
eigenvalue A). For those eigenvalues A € co(A) having a multiplication order equal to

1, we obtain that p(h = ¢, eX and X} =[€™¥'c,| = |c,| . thus x'(t) are bounded.

For those eigenvalues A €co(A) having a multiplication order greater than 1,
observe that

bt = 0.0 - o,

thus xo*() are unbounded.

This considerations proves that if there exists some eigenvalues A € co(A) having
the multiplication order greater than 1, the solutions x(f) are unbounded for any initial
value problem, thus the solution x = O is unstable (4, 5).

In case that all the eihenvalues A € co(A) have the multiplication order equal to
1, we infer that the solutions x(t) of the equation (1) are bounded and, in the same
time, the zero-solution of equation (1) is stable, but it is not asymptotically stable for
the reason that for every § >0 it can be x(H=8"™?'c, a solution of equation (1)
(where A eco(A), IIXO)Il = & and ¢, is an eigenvector of the eigenvalue A). For this

solution we can have X1 = Hé’e"’W”CﬁH =d|c,[ = thus lim,__|x(H]| = 0. The theorem
is proved.

R Y e @®)

3. EXAMPLE AND SOLVING
Consider the equation

X =Ax, x=(x.x,), A:ﬁ _22} @

The eigenvalues of Aare A=1+i, A=1-1.
A complex eigenvector belonging to 1+iis found by solving the equation
(A-(+i))w=0 a0

-1-i -2 | w
1 '{=0 an
T 1-ilw,
(-1-i)w;—2w, =0
w,+(1-iw, =0
The first equation is equivalent to the second, as is seen by multiplying the
second by (-1-i). From the second equation we see that the solutions are all complex

forweC?,

or

(12)
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and multiples of any nonzero complex vector w such that w; = (—]+ i)W2 . For
example w;=1+1, w, =—i. Thus
= (1+i-)=(10)+ (1~ = u+ iv (13)
is a complex eigenvector belonging o 1+i .
Choosing the new basis {V,u} forR2c C?2 ,withv=(1,-1),u=(1,0), to find new
coordinates y1, y2 corresponding to this new basis, note that any x can be written

X= )(1(]'0)"‘ XQ(O']) =Y\t y,u= )/1(],—1)4- 2 (]/O) (14)
Thus
X1:y]+y2} or x=Py, P{] q (15)
X, ==Y, -1 0
The new coordinates are given by
N==% }or y=P'x, P'= {0 } (16)
Yo =X+ X, 1

The matrix of A in the y-coordinates is

i 3 P S R

Thus, the differential equation

K _ ax (18)
at
on R2, having the form
dy
=B 19
of y a9

in the y-coordinates, can be solved as
y(H=ue' cost—ve'sint,

20)
y,(N=ue'sint+ve cost
The original equation has its general solution
x(H=(u+v)e' cost+(u-v)e'sint, o

x,(N=—-ue' cost+ ve'sint
4. CONCLUSIONS

Most of the theories examining a stability problem of the zero solufion of a linear
differential equation are based on the Lyapunov stability and instability theorems. As
has been shown above, this method is an easy way to get the behaviour of the zero
solution only by studying the sign of the eigenvalues for the systemn matrix. The
theorem exposed is very useful in the stability theory of first approximation.
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