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Abstract 
Heat and Mass transfer effects on free convective flow past a semi-infinite vertical plate are considered 
here-with. The governing boundary layer equations for the above problem are set up and non-
dimensionalised. The non-dimensional governing equations are solved by an implicit finite difference 
scheme of Crank-Nicolson Method, which is fast convergent and unconditionally stable. Numerical 
results are obtained and representative set of these results is displayed graphically on the velocity, 
temperature and concentration profiles. The local and average skin friction, Nusselt number and 
Sherwood Number are also displayed graphically. 
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1. INTRODUCTION 
 
In recent years, the problem of two-dimensional free convective flow past a semi-

infinite plate with different boundary conditions has attracted the attention of many 
researchers. This is connected with a wide range of natural occurring phenomena and 
practical applications. Simultaneous heat and mass transfer in natural convection flows on a 
vertical plate has a wide range of applications in the field of science and technology. 

Polhausen [1] first studied the steady free-convective flow past a semi-infinite vertical 
plate by integral method. Similarity solution to this problem was given by Ostrach [2].   Siegel 
[3] was the first to study the transient free-convective flow past a semi-infinite vertical plate by 
integral method. These problems are concerned thermal convection only. But in nature along 
with the free convection currents caused by the temperature difference, the flow is affected 
by the differences in concentration on material constitution. For example, in atmospheric 
flows there exists a difference in the H2O concentration and hence the flow is affected by 
such concentration difference. Hence steady free convective flow with mass transfer was 
studied by Gebhart and Pera [4]. The effects of mass transfer on transient free convective 
flow past a semi-infinite vertical isothermal plate were studied by Callahan and Marner [5] by 
explicit finite difference method. Soundalgekar and Ganesan [6] studied the same problem 
by an implicit finite difference method. Soundalgekar and Ganesan [7] analysed the problem 
of transient free convection with mass transfer on a vertical plate with constant heat flux by 
using an implicit finite difference scheme. In nature, the mass also may be diffused at a 
constant rate from the surface. However, the problem of natural convection flow over a 
vertical plate with heat and mass flux did not receive the attention of any researcher. Hence, 
in this problem it is proposed to solve the problem of transient unsteady free convection flow 
past a semi-infinite vertical plate with heat and mass flux. 
 

2. FORMULATION OF THE PROBLEM 
 

We considered a two-dimensional unsteady flow of a viscous incompressible fluid past a 
semi-infinite vertical plate with constant heat and mass flux.. We assume that the 
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concentration  of the diffusing species in the binary mixture is to be very small in 
comparison with other chemical species, which are present, and hence we neglect Soret 
and Duffor effects. It is also assumed that the effects of viscous dissipation are negligible in 
the energy equation. Initially, it is also assumed that the plate and the fluid are of the same 
temperature and concentration. At time 

C′

0≥′t  heat and mass is assumed to be supplied at 
a constant rate at the plate and is maintained at the same value. The x-axis is measured 
along the plate and y-axis is measured normal to the plate. Then under the usual Boussinesq’s 
approximation, the boundary layer flow is governed by the following equations.  

0y
v

x
u =

∂
∂+

∂
∂                                                 (1) 

                                           
2y

u2
)CC(g)TT(g

y
uv

x
uu

't
u

∂

∂
ν+∞

′−′∗β+∞
′−′β=

∂
∂

+
∂
∂

+
∂
∂                           (2) 

                                                      
2y
T

y
Tv

x
TuT

∂
′∂

α=
∂

′∂
+

∂
′∂

+
′∂
′∂ 2

t
                   (3) 

2y
CD

y
Cv

x
Cu

't
C

∂
′∂

=
∂

′∂
+

∂
′∂

+
∂
′∂ 2

                                                    (4) 

Initial and Boundary conditions are as follows: 
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Introducing the following non-dimensional quantities 
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Governing equation reduces to the following form: 
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The corresponding initial and boundary conditions in non-dimensional quantities are 
given by 
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3.   NUMERICAL TECHNIQUE 
 
An implicit finite difference scheme of Crank-Nicolson type has been used to solve the 

governing non-dimensional equations (7) − (10) under the initial and boundary   conditions 
(11). The method of solving the above finite difference equations using Crank-Nicolson type 
has been discussed by Soundalgekar and Ganesan [6]. The region of integration is 
considered as a rectangle with sides Xmax (= 1.0) and Ymax (= 22.0) where Ymax corresponds to 
Y = ∞ which lies very well outside the momentum, thermal and concentration boundary 
layers. Appropriate mesh sizes ΔX = 0.05, ΔY = 0.25 and time step Δt = 0.01 are considered for 
calculations.  Computations are repeated until the steady state is reached.  The steady-state 
solution is assumed to have been reached when the absolute difference between values of 
velocity U as well as temperature T and concentration C at two consecutive time steps are 
less than 10-5 at all grid points. The Crank-Nicolson implicit finite difference scheme is always 
stable and convergent.  

 
4. RESULTS AND DISCUSSION 

 
The effects of the Grashof number and buoyancy ratio parameter on the transient 

velocity, temperature and concentration profiles are shown in Figures 1,2 and 3 respectively. 
The velocity increases steadily with time reaches a temporal maximum and consequently it 
reaches the steady state. However, time required to reach the steady state depends upon 
the value of Grashof number and buoyancy ratio parameter N. An increase in N leads to an 
increase the velocity, whereas the velocity decreases with the increasing value of the 
Grashof number. This indicates that the buoyancy force due to concentration dominates in 
the region near the plate over thermal buoyancy force on velocity. The buoyancy forces due 
to temperature and concentration are oppose in nature when N is negative. Due to the 
interaction of these two opposing force, time taken to reach the steady state is more. It is 
observed that the temperature and concentration increases with increasing Grashof number, 
whereas the effect of Grashof number is nil when t is small. Temperature and concentration 
field decreases with increasing value of buoyancy ratio parameter N. 

Fig.1 Transient velocity profiles at X=1.0 
                 for different Gr and N (* - steady state)
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Fig.2 Transient temperature profiles at X=1.0 
         for different Gr and N (* - steady state)
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The steady state velocity, temperature and concentration profiles are shown at the 
Upper edge of the plate viz., at X=1.0 for different value of Prandtl number and Schmidt 
number are shown in Figures 4, 5 and 6 respectively. The velocity is more when light species 
concentration is present than that when the heavy species concentration is present. Time 
taken to reach the steady state depends upon the value of Sc. The velocity of air (Pr = 0.7) is 
always greater than the water (Pr = 7.0) is justified. Temperature increases with Schmidt 
number and concentration increases with Prandtl number. This is quite expected. Thermal 
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boundary layer decreases for the larger value of Pr. Steady state concentration profiles 
attained at an early state for the lower value of Pr. 

  

Fig.3 Transient concentration profiles at X=1.0 
         for different Gr and N (* - steady state)
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Fig.4 Steady state velocity profiles at X=1.0 
         for different Pr and Sc
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Fig.5 Steady state temperature at X=1.0 
         for different Pr and Sc 
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Fig.6 Steady state concentration profiles at X=1.0 
         for different Pr and Sc
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We now study local and average skin friction, local and average Nusselt number, local 

and average Sherwood number. In non-dimensional quantities, they are given by, 
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The derivatives involved in equations (12) to (17) are evaluated by using a five-point 
approximation formula and then the integrals are evaluated by Newton-Cotes closed 
integration formula. 

Fig.7 Local skin friction
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Fig.8 Local Nusselt number
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Fig.9 Local Sherwood Number
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Fig.10 Average skin friction
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Fig.11 Average Nusselt number
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Fig.12 Average Sherwood Number
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Local values of skin friction, Nusselt number and Sherwood number are plotted in 

Figures 7, 8 and 9 respectively. We observe from the figure 7 that an increase in Sc leads to a 
decrease in local shear stress when N is constant but it increases with increasing N. Local skin 
friction is not significantly affected by the presence of species concentration near the 
leading edge of the plate, since the leading edge the heat and mass transfer process are by 
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pure conduction and pure mass diffusion and hence the velocity field is not affected by 
convection of heat and mass. We observe from figure 8 that an increase in Sc leads to an 
increase in Local Nusselt number whereas an increase in Pr leads to a decrease in Local 
Nusselt number.. At small values of X, i.e., near the leading edge of the plate, Sc does not 
affect the local Nusselt number as there exist pure diffusion and conduction. We conclude 
from figure 9, that an increase in Sc or N leads to an increase in local Sherwood Number.. At 
small values of X, due to pure conduction and diffusion, local Sherwood Number is not 
affected by both Sc and N. 

Average values of skin friction, Nusselt number and Sherwood number are plotted for 
various parameters in Figures 10, 11 and 12 respectively. 

Average skin friction increases at small values of t whereas an at large value of t, the 
average skin-friction remains independent of t, i.e., the average skin-friction depends on time 
t only when t is small. Average skin friction gets reduced with increasing value of Sc, but it get 
increased with N through out the transient period and steady state level. Also we conclude 
that average skin friction decreases as Pr increases. From Figure 11, we conclude that the 
average Nusselt number decreases sharply at small values of time t, being unaffected by Sc 
or N, but at large values of t, it is independent of time. Average Nusselt number gets 
decreased with decreasing value of Sc but it gets increased with decreasing value of N in the 
transient period and steady state level. We observe from figure 12 that the behaviour of 
average Sherwood number is the same as local Sherwood number with respect to Sc, Pr and 
N. But average Sherwood number is independent of time when t is large. 
 
Nomenclature 
C′  species concentration 
C  dimensionless species concentration 
D coefficient of diffusion in the mixture 
Gc mass Grashof number  
Gr  Grashof number  
g acceleration due to gravity 

uN  dimensionless average Nusselt number 
NuX dimensionless local Nusselt number 
Pr  Prandtl number 
qw heat flux  per unit area 

*
wq  mass flux per unit area 

Sc Schmidt number 

Sh  dimensionless average Sherwood number 
ShX dimensionless local Sherwood number 
T ′  temperature 
T dimensionless temperature 
t′  time 
t dimensionless time 

u,v velocity components in x, y directions  
V,U dimensionless velocity components in X, Y 

directions respectively 
x spatial coordinate along the plate 
X dimensionless spatial coordinate 
y   spatial coordinate along upward normal to the 
plate 
Y   dimensionless spatial coordinate along upward 
normal to the plate 
Greek symbols 
α thermal diffusivity        
β volumetric coefficient of thermal expansion 
β* volumetric coefficient of expansion with 
concentration 
ν kinematic viscosity 
τ X  dimensionless local skin friction 

τ  dimensionless average skin friction 
Subscripts 
w conditions on the wall 
∞ free stream condition
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