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ABSTRACT:

A method has been developed to fit a curve differentiable up to the rth order derivatives onto
a set of empirical data, when both dependent and independent variables are loaded by
errors of normal probability distribution. The method purposed can successfully be used in
different fields of mechanical/material science and engineering as well as in the field of mesh
generation techniques to provide grids for computational fluid dynamics (CFD) simulafions.
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1. INTRODUCTION

The importance of the smoothing and curve fitting problem played an important role in
Whittaker's work [1] in the middle of the 20t century. Nyiri developed a smoothing procedure
and a linear equation system solver method [2,3,4,5], when the empirical data sets have
been loaded by random errors. These methods were succesfully built into a second-order
continuous mesh generation technique by Konozsy [6] to determine an orthogonal curvilinear
coordinate system for computational fluid dynamics (CFD) simulations. The method was
further developed by Nyiri [7] to construct Hermite polynomials fitting on to 2, 4, 8, points of a
1D, 2D, 3D functions, respectively up to their rth order derivatives. Using smoothing procedure
with an appropriate curve fitting method is one of the most relevant issue currently in the field
of mechanical/material science and engineering applications. For example, the
disconfinuous phase diagram information has to be coupled with the corresponding
fransport equations for modelling solidification processes using industrial steels [8,9,10]. The
purposed method can have beneficial effect on these kinds of problems as well, especially
when a discontinuous function has to be substituted by a continuous one.

2. THE EQUATION OF SMOOTHING

The aim of the method proposed is to fit an r fimes differenfiable curve to a set of
empirical data loaded by normally distributed errors on both variables. The published papers
[2.3,4,5] only the dependent variables in the cases of 1, 2 and 3 dimensions were supposed
having errors. The hypothesis will be maintained that the probability distribution of the error
follows the normal law, and not any more assumption will be put concerning the class of the
exact function from which the values differ, if there is any. The root of the smoothing is the
sum of squares of the differences between the empirical data and the obtained values and

the r" divided differences of those will be the minimum.
Let the (&k,nk) empirical data be given in the (x,y) coordinate system 1<k<n,

Ex < Eiyr- The minimum of the sum will be sought for
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n-r 2 n 2 n 2
S:k§0(8ruk) +kz:]pk(uk_nk) +k§]qk(xk_§k) : (1.1)
where p, and g, are the smoothing parameters. The r™ divided difference is
r-1 r-1
Xirr — X
Infroducing the Lagrange function
]
Fiir (X) = g(x ~ Xi-in ) (1.3)
the first derivative of this is
d , r r .
E\Pk—i,r(x) =Wiir ()= v=ox1:[o(x - Xk—i+x) O<is<r, (1.4)
ESY
and
r
Fiir (Xk—i+j ) = }g(xk—iﬂ - kaim)' O<j<r, (1.5)
A#]

with this the divided difference can be written as follows
' 1
d'uy ;= %Uknj[\ljki,r(xkiﬂﬁ ,
if 1I<K<r then 0<i<K-10<j<r, (1.6)
if r+1<K<n-r then 0<i,j<r,
if n—r+1<K<n then 0<i<r, 0<j<minlr,n—K+il.

The numbers p, >0, g, >0 are inversely proportional to the square of the standard
deviations. The part sum of the Eq. (1.1) belongs to a point K is

Sk Zgé(sruK—i)z +pK(uK —nK)2 +qK(XK _QK)2~ (1.7)
The necessary conditions for the minimum of this sum are
0S 0S
——*=0,—=0. (1.8)
Ouy OXg

3. THE FIRST CONDITION OF SMOOTHING

Let us differentiate S, respect to u, getting

185 & 88'uy
—— R = u —i—+ u, — =O, 2.1
230~ 58Uy P (U — ) (2.1)

where

—j r ! ' ]
3'uy -= 2 uK—i+j[‘PK—i,r(XK—Hj)\PKfi,r(XK )T :
Uy j=0
The linear equation system (L.E.S.) has to be solved is as follows

r . , 1
jgéuK—Hj[lPK—i,r(XK—Hj)lPK—i,r(XK )} + PyxUx = PyMNk - (2.2)
The compact form of the system is
& Uy, = PNk - 1K<, (2.3)

whereif 1<K<r,then1-K</<r,
fr+1<K<n-r,then-r</<r,
if n—=r+1<K<n,then-r</<n-K.
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The coefficients are
A 2
A o=Pkt ig[lPK—i,r(XK )T , (2.30)
ifI<K<r,thenu=0, v=K-1,

ifr+1<K<n,thenp=0, v=r,
if n-r+1<K<n, thenu=K+r-n.

= E ¥ b ) ¥ bo)] (2.30)
if 1I<K<r,thenl-K</<r,
where if/<0,thenp=—(<i<K-1=v,
if£>0, thenu=0<i<v=min{K-1r-¢},
if r+1<K<n-r,then-r</<r,
if /<0,thenp=—(<i<r=v,
if 7>0,thenp=0<i<r—/=v,
if n—r+1<K<n,then-r</<n-K,
if £<0,thenp=max{~¢,K-n+rhv=r,
if £>0,thenp=K-n+r, v=r—~/
The algorithm for the solution of the banded L.E.S. has been found in paper [4].

4. THE SECOND CONDITION OF SMOOTHING

For satisfying the second condition, let us differentiate the S, according to Xy

o L
ai%(S UK—i)2+QK(XK_§K)=O' (3.1)
and denoting this by fk
Loar 0 o
f = E}S Uk 676 Ug-i + qK(XK _FvK): 0, (3.2)

K

.
f =fK(xK_H,...xK_,,xK,xK+],...xK+V), X = [XK_“,...xK_,,xK,xKH,...xKW]T, f= [f],fQ,...fn] .

where
if1<K<r, thenu=K-1, v=r,

ifr+1<K<n-r,thenpu=v=r,
ifn—-r+1<K<nthenu=r, v=n-K.

The Jacobian matrix of f vector according to X is
of

and the entries of it are
o
Xy

KK+ =
OXy4 K

where the intervals for ¢ are as same as in the case of Eq. (2.3). We have obtained a banded
stfructure non-linear system of equations as we have had previously. Furthermore, let us
differentiate the Eq. (3.2)

aar . ’
%:_I ) _jé)uKiﬂ' ['{IKfi'r(XK*”J )}

K+¢

UG 0
= izzo {SUH aX—SruK_i} + 0y

2 0

a‘{l{(i'r(x}(iﬂ), O<ic<r,

203



ENGINEERING. TOME VI (year 2008). Fascicule 2 (ISSN 1584 — 2665) «

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA — JOURNAL OF  JOURNAL OF ENGHEERING l S
or aunnalsy
FACULTY OF ENGINEERING HUNEDOARA

0 OUg_. d : 0 ; o ..
WKH;TKKI = _E)UK—HJ‘{ - 2[\PK—i,r(XK—i+j )}3 ‘mTK-i,r(XK—nj )'XTK—i,r(XK-Hj )“'
+[kai,r(XKfi+J)T2 ’ 6X(i ﬂ &qﬁ(i,r(xKHi)}'
od'u, : 0 ,
ﬁ - _jé)uK—iﬂ [TK—i,r(XK—i+i)T2TWTK—i,r' -rsfi<r,

and the non-linear system of equations
D(x)t=—f(x)=b

has to be solved by iteration for t, and x™' = x™ +t™. The elements of the D(x) matrix can
be approximated as
fo(x+ t)—f(x)

D kse ® A
X

5. THE CHOICE OF THE SMOQOTHING PARAMETERS
For the sake of simplicity, let us choose the parameters independent of K, i.e. p,=p

and gy =g. Let us define the following vectors

x=[x],...xn]T, u=[u] ..... un]T, Z;:[&,] ..... in]T

infroducing the following

n-r n 2 n 2
D(x,u.&m;p.q)= KZ:](ESruK)Z, Ky(ump)= |<Z:I(UK -ne)’. Ky(xEaq)= KZ::](XK -& ). (4.1)
functions which give the expression for Eq. (1.1) as
S=D+pK,+09K,. (4.2)
and the conditions for getting the minimum value are
oS oS
—_— = O
ou,  OXy

Let us nominate x, and u, af which the minimum is reached, then

S$=5"(Ue.Xe:P.0)
Choosing arbitrary numbers like «,p > 0 and examining the following

S(Ue.Xe:k.p) = D(Ue . Xe:P.0)+ KK (Ue:P)+ pK  (Xc: 1)
sum-total which agrees with S if k=p and p=q. In order to search the minimum of S as
the function of p and g, we have to calculate the derivatives
S oD K, 8S oD K,
—=—4K ,—=—+p .
op op op oq oq aq
If k =k and p =E , then the derivatives will be zero

L) L)
~-__op ~_ . dq
K= K, and p = K,

op oq

Choosing p* =% and q* =E, then
s'(p".a’)=Slp)
and S has its minimum. Af first let us consider the case when the ordinates are smoothed only

S= kz;:](SruK)Q + pKZ::](UK _rlK)Q-
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If p=0 then the solution will correspond to the conditions 8'u, =0, i.e. it is an r—1

degree parabola which minimizes the sum Z(UK —nK)2. This is a Gaussian least square
polynomial, and this method is an extension of it. In this case, D, and K, denotfes the
corresponding values. K,, belongs to g =0. There will be no smoothing in the second case,

2
then K,, =0 and D, = Z(SruK) :
Next examination will be the case, when p and q are variables, and let us consider fo
the following function

Di(p, K K
U(p,CI) — (g q) + Ku(p) n Kx(q) )
u0 x0

o0

where K, is belonging to g =0. For S, we obtain

S=D,U,and x = D, L p= D, ,
KuO KXO
consequently
p* _ D, q* D, 43
I<uO KXO ( )
and

S(p*,q*)z DwU(p*,q*),

aU(p* Iq:« ) + au(p* ,q*) _ O
op oq
Choosing these parameters accordingly the sum S will be minimized so that the sums of

(uK - nK)2 and (xK - E_,K)2 will be the smallest. If the errors of the empirical data are known, i.e.
n n

Kyg = Z‘,(uK —nK)2, Ky = Z(XK —é’;K)2 are given, then computing the functions Ku(p),
K=1 K=1

Kx(q) with proper p and g can be determined.
6. THE CURVE FITTING

After being completed to the smoothing procedure, the obtained set of values can be
used by applying the forward and backward Newtonian I. and Il. mth order polynomials. One
can fit onto m+1 points of one of the polynomials

Pem = Ug + gSUKlPK,i—l(X)' (5.1)
or
QK,m(X) =Ug + ggi}(—iTKH—i,i—] (x) . (5.2)

Using the derivatives of those polynomials at every neighbouring point, one can fit a
Hermite polynomials [7] joining smoothly up to the required order of differential quotients [2,7].

Finally, the (r —u)th derivative of the function W is

\P}g;u) = (r - “)l pp+l[x X X = Xy qpreees X — XK+r] ’ (53)
where
pl]=pla.a...a] (5.4)
means the sum of all the possible v elements products of &; .
/ A, -1 - Ayl
p)=Xa X a ..Xa, Xa,. (5.5)
Ay=v  hyg=v-l Y rp=2 =1
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7. THE ALGORITHM OF SMOOTHING PROCEDURE

For the following example, we suppose that there are two upper and lower bands exist
compared to the main diagonal of the linear equation system (r = 2), therefore 0<i,j<2,

—-2</¢<2 and 3<K<n-2. First of all, the divided differences will be computed, and each
step can be found in Tables 1-3.

2
8%uy = %UKH‘ [‘Pk,z(xmj)}] ;
62UK4 = éuknj [‘Prru,z(xmnj )r ;

2
2 ' ]
du , = jzé)uKQH[\PKZ,Q(XKJrQH)T

After knowing the divided differences, the first derivative of the Lagrange polynomial
and the other derivatives for satisfying the conditions of smoothing procedure, we have to
solve the linear equation system according to Egs. (2.3a)-(2.3b). The coefficients of the linear
equation system for satisfying the first condition of smoothing procedure are as follows

2r 2
A0 =Pk + E(:)[\PK—LQ(XK )T
v ' , 1
A, = ig[lPK—iQ(XKM)\PK—i,Q(XK )T .
if¢t=-2-1thenu=-—<i<2=y,
ifr=12 thenu=0<i<2-/=v.
For satisfying the second condition of smoothing, we have to solve a non-linear system

of equation, therefore the elements of the Jacobian maftrix Eqg. (3.3) has to be constructed
according to

DK,K+€ =

2
o % 0 {SQUM 05 UK‘i}qK X,

OXy,p 120 OXy,y OXg OXk s
where
2, 88%uy_
fc = 267U qK(XK éK):O
i= OXg
and the necessary derivatives are
0 2 : 2 0 ,
NIPEIEEDIIPEN | SEPLVONNY | Bk PEPLV IR}
2 == Sl 5 b
0 0 2 2 , 2 0 ' '
e, ag’ Uk :_J,%)UK—HJ{[IPK—i,Q(XK—iﬁ—j)T alPK—i,Q\PK—i,Q(XK—Hj )}

TABLE 1. THE FIRST DERIVATIVE OF THE LANGRANGE FUNCTION USING EQUATION (1.5)

\P;;—i,r (XK—i+j )
J' =0 1 2
i=0 (xic = Xi31) Xk — Xk 42) (XK+1 — Xk )(XK+1 - XK+2) (XK+2 - XK) Xks2 — XK+1)
1 (XK4 - XK)(XK—I - XK+1) (XK - XK—1)(XK - XK+1) (XK+1 - XK—1)(XK+1 - XK)
2 (XK—Q - XK—1)(XK—2 - XK) (XK—l - XK—Q)(XK—l - XK) (XK - XK—Q)(XK - XK—])
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TABLE 2. FIRST DERIVATIVES FOR SATISFYING THE CONDITIONS OF SMOOTHING PROCEDURE

0 ,
o K2 (XK—i+j )
K+/
j=0 ]
(=-2 0 0
-1 0 0 0
i=0 0 (XK = Xk )+ (XK - XK+2) - (XK+I - XK+2) B (XK+2 - XK+1)
! — (X = Xeu2) (o1 =X )+ (K = X —(Xp = X¢)
2 — (XK _ XK+]) — (XK+1 — XK) (XK+2 - Xk )+ (XK+2 - XK+1)
(=-2 0 0 0
-1 (XK—l — Xk )+ (XK—I - XK+1) - (XK - XK+1) - (Xm - XK)
=1 0 _(Xm _XKH) (XK _XK—1)+(XK _XK+1) _(XK+1 _XK—l)
1 - (XK—l - XK) - (XK - XK—]) (XK+I — Xk )+ (XK+1 - XK—])
2 0 0 0
l=-2 (XK—Z - XK—1)+ (XK—Q - XK) - (XK—l - XK) - (XK - XK—])
) =1 - (XK—2 - XK) (XH ~Xco)* (XH ~ X - (XK - XK—Q)
0 - (XK—2 - XK—]) - (XK—l - XK—Q) (XK — Xk-2 )"‘ (XK - XK—])
1 0 0 0
2 0 0 0
TABLE 3. SECOND DERIVATIVES FOR SATISFYING THE CONDITIONS OF SMOOTHING PROCEDURE
o o .
e, a K—i,2 (XK—i+j)
J = O 1 2
) 0 0 0
=0 — 0 0 0
0 2 0 0
1 -1 -1 1
2 =1 1 -1
) 0 0 0
—1 —1 —1 1
i=1 0 0 2 0
1 1 I 7
2 0 0 0
f=-2 —1 1 —1
-1 1 -1 -1
=2 0 0 0 2
1 0 0 0
2 0 0 0
8. NUMERICAL EXAMPLE FOR SMOOTHING PROCEDURE
A complete numerical example had been found in Tables 4-12.
TABLE 4. THE (£,,m, ) SET OF EMPIRICAL DATA
K 1 2 3 4 5
£ 0 1.0 1.5 20 25
N« 10.2 8.4 8.1 7.5 7.9
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TABLE 5. ELEMENTS OF THE LINEAR EQUATION SYSTEM FOR THE FIRST CONDITION

Wiio (XS—i+j) %‘P&iz (X3—i+j)
j=0 1 2 0 1 2
i=0 0.5 -0.25 0.5 -1.5 0.5 -0.5
1 0.5 -0.25 0.5 1.0 0 -1.0
2 15 -0.5 0.75 1.0 -1.0 3.0

The divided differerences
9 2 , 1
j=0

8%u, = éu%j[‘{'éj(xm)r =-0.60000,

2 ’ 1
82U] = j;) Uy, [\PLQ (X1+j )T =0.80000,
and the diagonal elements of the linear equation system

2
2r ., ) 1
a31_2 = |:Z2[T3—I,2(X])\P3—I,2(X3 )]> = 0.88889 ’
2 , '
a3, = E][\PS—LQ(XQ)\P&LQ(XS )r =-10.66667,
| f '

or . 1
a3, = i%[\Pa—i,2(X5)‘P3—i,2(X3 )T = 4.00000.
TABLE 6. DERIVATIVES FOR CONSTRUCTING THE JACOBIAN MATRIX

ax(; \Pé—i,2(x3—i+j)
i=0 1 2
j=0 1 2 j=0 1 2 j=0 1 2
f=-2 0 0 0 0 0 0 -2.5 0.5 -0.5
-1 0 0 0 -1.5 0.5 -0.5 1.5 0.5 -1.5
0 -1.5] 0.5 -05 1 1.0 0 -1.0 1.0 -1.0 2.0
1 1.0 0 -1.0 | 0.5 -0.5 1.5 0 0 0
2 0.5 | -0.5 1.5 0 0 0 0 0 0
TABLE 7. DERIVATIVES FOR CONSTRUCTING THE JACOBIAN MATRIX
2
% 2, 58%U,_; 062U, .
0 ]XSH; 5 0 OXz  OXgyy
¢=-2 | 1.73333 0 0 0.46222
1 —20 0.6 0 —2.69333
0 0.26667 -3.6 4.4 32.39111
1 0 3.0 -0.8 —-14.32000
2 0 0 -3.6 —15.84000
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TABLE 8. DERIVATIVES FOR CONSTRUCTING THE JACOBIAN MATRIX

GXL;M [Té—i,z (X3—i+j )TQ : %‘Pé—i,z (X3—i+j )
j=0 1 2
(=-2 0 0 0
20 -1 0 0 0
0 -36.0 320 -4.0
1 24.0 0 -8.0
2 12.0 -32.0 12.0
(=-2 0 0 0
-1 240 0 -8.0
i=1 0 -16.0 0 -16.0
1 -8.0 0 24.0
2 0 0 0
(=-2 1.48148 -8.0 4.74074
-1 -0.88889 -80 14.22222
=2 0 —0.59259 16.0 ~18.96296
1 0 0 0
2 0 0 0
TABLE 9. DERIVATIVES FOR CONSTRUCTING THE JACOBIAN MATRIX
[‘{’3’4,2 (X3—i+j )] 2 8%;(%\?3'.2 (X3—i+j)
j=0 1 2
(=-2 0 0 0
i=0 —1 0 0 0
0 8.0 0 0
1 -4.0 -16.0 -4.0
2 - 40 16.0 -4.0
(=-2 0 0 0
-1 -40 -16.0 40
i=1 0 0 32.0 0
1 4.0 -16.0 -4.0
2 0 0 0
(=-2 —0.44444 4.0 -1.77778
-1 0.44444 -4.0 -1.77778
=2 0 0 0 3.55556
1 0 0 0
2 0 0 0
TABLE 10. DERIVATIVES FOR CONSTRUCTING THE JACOBIAN MATRIX
0 0
0 Us
O0X3,, OX3
i=0 1 2
{=-2 0 0 0.977778
-1 0 37.2 —4.53339
0 —49.2 -24.0 3.55564
] 37.2 -13.2 0
2 12.0 0 0
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TABLE 11. DERIVATIVES FOR CONSTRUCTING THE JACOBIAN MATRIX

22: i52“34

"o, 0Xg

{==2 0.78222

-1 —25.94667

0 —81.15549

1 82.32000

2 24.00000

TABLE 12. DIAGONAL ELEMENTS OF THE JACOBIAN MATRIX

of, s 2 08°U, ; 95°U, L5ty O 85°U,
- 3-i

D3 340 —
' OXg,y 1=0 OXz  OXgyy OX3,, OXg

(=-2 1.24444

- —28.64000

0 —48.76438 +

1 68.00000

2 81.60000

9. NUMERICAL EXAMPLE FOR CHOOSING THE SMOOTHING PARAMETERS

TABLE 13. THE SET OF EMPIRICAL AND SMOQOTHED DATA SYSTEM

K Ex Nk Xf< u;

1 0.0 10.2 —0.44301 9.79926

2 1.0 8.4 0.86080 8.56901

3 1.5 8.1 1.46634 8.20335

4 2.0 7.5 2.05231 7.98061

5 2.5 7.9 2.56754 7.91858

6 3.0 7.8 3.04186 7.96851

7 3.7 8.6 3.83898 8.16074

8 50 8.3 4.83828 8.06250

9 6.5 6.0 6.68653 6.07335
10 8.0 3.4 8.23354 3.47118

11 1.0 0.2 10.05684 0.19294

D, =7.93984 g =0.18974 p =0.55334

TABLE 14. QUANTITIES FOR CHOOSING THE SMOOTHING PARAMETER
p K D S, D
! KUO Doo

10.0 0.09519 1.63643 0.21257
10.095 0.16648 1.24534 0.16831
p 0.71943 0.61642 0.12767
10.0°95 1.19108 0.42017 0.13582
10.0°! 2.62681 0.15847 0.20286
10.07° Ko = 14.36061 0.00000 1.00000
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TABLE 15. QUANTITIES FOR CHOOSING THE SMOOTHING PARAMETER

K, K D
q Kx D +
KUO I<XO Doo
10.0 0.00102 0.59246 0.12466
1.0 0.04610 0.49391 0.12327
q 0.36385 0.37265 0.10569
10.07" 0.72650 0.32376 0.10820
10.072 7.08487 0.15582 0.23902
10.073 K,, =41.84478 0.05197 1.05664

FIGURE 1. CHOOSING THE SMOOTHING PAREMETERS

10. NUMERICAL EXAMPLE FOR MESH GENERATION

01+ 8

0.08

0.06

0.04 Hii

0.02

1 1 1 1 1 1 L L
0.02 0.04 0.06 0.08 01 012 0.14 0.16

Z

FIGURE 2. A GRID FOR COMPUTATIONAL FLUID DYNAMICS (CFD) SIMULATIONS
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11. CONCLUSIONS

The idea of the presented method has been based on an extension of Gaussian least

square polynomial. It is applicable to smooth empirical data system which is loaded by errors
of normal probability distribution, and to fit a curve differentiable up to the rth order
derivatives onto a set of smoothed empirical data system. The method purposed can be

used
mesh

in different fields of mathematical and engineering sciences as well as in the field of
generation techniques, especially when a discontinuous function has to be substituted

by a continuous one.
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