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ABSTRACT:  
A method has been developed to fit a curve differentiable up to the rth order derivatives onto 
a set of empirical data, when both dependent and independent variables are loaded by 
errors of normal probability distribution. The method purposed can successfully be used in 
different fields of mechanical/material science and engineering as well as in the field of mesh 
generation techniques to provide grids for computational fluid dynamics (CFD) simulations.  
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1. INTRODUCTION  

 
The importance of the smoothing and curve fitting problem played an important role in 

Whittaker’s work [1] in the middle of the 20th century. Nyíri developed a smoothing procedure 
and a linear equation system solver method [2,3,4,5], when the empirical data sets have 
been loaded by random errors. These methods were succesfully built into a second-order 
continuous mesh generation technique by Könözsy [6] to determine an orthogonal curvilinear 
coordinate system for computational fluid dynamics (CFD) simulations. The method was 
further developed by Nyíri [7] to construct Hermite polynomials fitting on to 2, 4, 8, points of a 
1D, 2D, 3D functions, respectively up to their rth order derivatives. Using smoothing procedure 
with an appropriate curve fitting method is one of the most relevant issue currently in the field 
of mechanical/material science and engineering applications. For example, the 
discontinuous phase diagram information has to be coupled with the corresponding 
transport equations for modelling solidification processes using industrial steels [8,9,10]. The 
purposed method can have beneficial effect on these kinds of problems as well, especially 
when a discontinuous function has to be substituted by a continuous one. 
 

2. THE EQUATION OF SMOOTHING  
 

The aim of the method proposed is to fit an r times differentiable curve to a set of 
empirical data loaded by normally distributed errors on both variables. The published papers 
[2,3,4,5] only the dependent variables in the cases of 1, 2 and 3 dimensions were supposed 
having errors. The hypothesis will be maintained that the probability distribution of the error 
follows the normal law, and not any more assumption will be put concerning the class of the 
exact function from which the values differ, if there is any. The root of the smoothing is the 
sum of squares of the differences between the empirical data and the obtained values and 
the  thr   divided differences of those will be the minimum. 

Let the  empirical data be given in the ( kk ηξ , ) ( )yx,  coordinate system nk ≤≤1 , 
. The minimum of the sum will be sought for 1+ξ<ξ kk

201  



 

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL OF 
ENGINEERING. TOME VI (year 2008). Fascicule 2 (ISSN 1584 – 2665)  

 

202 

)( ) ( ) ( 2

1

2

1

2

0
kkk

n

k
kkk

n

k
k

r
rn

k
xqupuS ξ−∑+η−∑+δ∑=

==

−

=
, (1.1) 

where  and  are the smoothing parameters. The kp kq thr  divided difference is  
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Introducing the Lagrange function 
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the first derivative of this is  
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with this the divided difference can be written as follows 
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The numbers ,  are inversely proportional to the square of the standard 
deviations. The part sum of the Eq. (1.1) belongs to a point K is  
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The necessary conditions for the minimum of this sum are  
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3. THE FIRST CONDITION OF SMOOTHING  

  
Let us differentiate  respect to  getting  KS Ku
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where  
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The linear equation system (L.E.S.) has to be solved is as follows 
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The compact form of the system is  
KKKK pua η=+ll, , nK ≤≤1 , (2.3) 
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The coefficients are  
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The algorithm for the solution of the banded L.E.S. has been found in paper [4]. 
 

4. THE SECOND CONDITION OF SMOOTHING 
  

For satisfying the second condition, let us differentiate the  according to KS Kx   
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and denoting this by fK   
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The Jacobian matrix of f vector according to  is x

x
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and the entries of it are  
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where the intervals for  are as same as in the case of Eq. (2.3). We have obtained a banded 
structure non-linear system of equations as we have had previously. Furthermore, let us 
differentiate the Eq. (3.2) 

l
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and the non-linear system of equations  
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has to be solved by iteration for , and . The elements of the  matrix can 
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t mmm txx +=+1 ( )xD

( ) ( ).,
l

l
+

+ Δ
−

≈
K

K
KK x

fD xftx +
  

 
5. THE CHOICE OF THE SMOOTHING PARAMETERS  

  
For the sake of simplicity, let us choose the parameters independent of K, i.e. ppK =  

and  Let us define the following vectors .qqK =

[ ]Txnx ,...1=x , [ ]Tnuu ,..,.1=u , [ ]Tnξξ ,...,1=ξ  
introducing the following 
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functions which give the expression for Eq. (1.1) as 
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If  then the solution will correspond to the conditions , i.e. it is an 0=p 0=δ K
ru 1−r   

degree parabola which minimizes the sum ( )2KKu η−∑ . This is a Gaussian least square 
polynomial, and this method is an extension of it. In this case,  and  denotes the 
corresponding values. 
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Choosing these parameters accordingly the sum  will be minimized so that the sums of 
 and (  will be the smallest. If the errors of the empirical data are known, i.e. 

,  are given, then computing the functions 
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6. THE CURVE FITTING  
  

After being completed to the smoothing procedure, the obtained set of values can be 
used by applying the forward and backward Newtonian I. and II. mth order polynomials. One 
can fit onto m+1 points of one of the polynomials 
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Using the derivatives of those polynomials at every neighbouring point, one can fit a 
Hermite polynomials [7] joining smoothly up to the required order of differential quotients [2,7]. 
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7. THE ALGORITHM OF SMOOTHING PROCEDURE 

  
For the following example, we suppose that there are two upper and lower bands exist 

compared to the main diagonal of the linear equation system ( )2=r , therefore 2,0 ≤≤ ji , 
 and 22 ≤≤− l 23 −≤≤ nK . First of all, the divided differences will be computed, and each 

step can be found in Tables 1-3. 
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After knowing the divided differences, the first derivative of the Lagrange polynomial 
and the other derivatives for satisfying the conditions of smoothing procedure, we have to 
solve the linear equation system according to Eqs. (2.3a)-(2.3b). The coefficients of the linear 
equation system for satisfying the first condition of smoothing procedure are as follows 
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For satisfying the second condition of smoothing, we have to solve a non-linear system 
of equation, therefore the elements of the Jacobian matrix Eq. (3.3) has to be constructed 
according to 
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TABLE 1. THE FIRST DERIVATIVE OF THE LANGRANGE FUNCTION USING EQUATION (1.5) 

( )jiKriK x +−
′
−Ψ ,  

 0=j  1 2 

0=i  ( )( )21 ++ −− KKKK xxxx  ( )( )211 +++ −− KKKK xxxx  ( )( )122 +++ −− KKKK xxxx  

1 ( )( )111 +−− −− KKKK xxxx  ( )( )11 +− −− KKKK xxxx  ( )( )KKKK xxxx −− +−+ 111  

2 ( )( KKKK xxxx −− −−− 212 )  ( )( )KKKK xxxx −− −−− 121  ( )( )12 −− −− KKKK xxxx  
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TABLE 2. FIRST DERIVATIVES FOR SATISFYING THE CONDITIONS OF SMOOTHING PROCEDURE 
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TABLE 3. SECOND DERIVATIVES FOR SATISFYING THE CONDITIONS OF SMOOTHING PROCEDURE 
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8. NUMERICAL EXAMPLE FOR SMOOTHING PROCEDURE 
 
A complete numerical example had been found in Tables 4-12. 

TABLE 4.  THE ( )kk ηξ ,  SET OF EMPIRICAL DATA 

K  1 2 3 4 5 

Kξ  0 1.0 1.5 2.0 2.5 

Kη  10.2 8.4 8.1 7.5 7.9 
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TABLE 5. ELEMENTS OF THE LINEAR EQUATION SYSTEM FOR THE FIRST CONDITION 
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208 
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2

32,3

2

0
30,3 =Ψ∑+=

−′
−

=
xpa i

i
, 

( ) ( )[ ] 88889.0
1

32,312,3

2

2
2,3 =ΨΨ∑=

−′
−

′
−

=
− xxa ii

i
, 

( ) ( )[ ] 66667.10
1

32,322,3

2

1
1,3 −=ΨΨ∑=

−′
−

′
−

=
− xxa ii

i
, 

( ) ( )[ ] 00000.16
1

32,342,3

1

0
1,3 −=ΨΨ∑=

−′
−

′
−

=
xxa ii

i
, 

( ) ( )[ ] 00000.4
1

32,352,3

0

0
2,3 =ΨΨ∑=

−′
−

′
−

=
xxa ii

i
. 

TABLE 6. DERIVATIVES FOR CONSTRUCTING THE JACOBIAN MATRIX 

( )jii x
x +−−

+

Ψ′
∂
∂

32,3
3 l

 

0=i 1 2   

0=j  1 2 0=j  1 2 0=j  1 2 

2−=l 5.2− 5.0 5.0−0 0 0 0 0 0     

1−  0 0 0 5.1− 5.1 5.1−5.0 5.0− 5.0      

5.1− 5.0 5.0− 0.1 0.1− 0.1 0.1− 0.20 0         

5.10.1 0.1− 5.0 5.0−1 0 0 0 0      

5.15.0 5.0−2 0 0 0 0 0 0    
 

TABLE 7. DERIVATIVES FOR CONSTRUCTING THE JACOBIAN MATRIX 

l+

−

∂
δ∂

3

3
2

x
u i  

 

∑
= +

−−

∂
δ∂

∂
δ∂2

0 3

3
2

3

3
2

i

ii

x
u

x
u

l

 

0=i 1 2  
2−=l 1.73333 0 0 0.46222  

1− 0.2− 6.0 69333.2−0     
0 0.26667 6.3− 39111.324.4   
1 0 0.3 8.0− 32000.14−   
2 0 0 6.3− 84000.15−  
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TABLE 8. DERIVATIVES FOR CONSTRUCTING THE JACOBIAN MATRIX 

( )[ ] ( )jiijii x
x

x
x +−−

−
+−−

+

Ψ′
∂
∂

⋅Ψ′
∂
∂

32,3
3

2
32,3

3 l

  

0=j   1 2 

2−=l 0 0 0  
1− 0 0 0  

209 

0 0.36−  0.32  0.4−  
0=i  

0.8−1 24.0 0  
0.32− 12.0 2 12.0  

2−=l 0 0 0  
0.8−1− 24.0 0   

0 0.16−  0 0.16−  1=i  

0.8− 0.241 0   
2 0 0 0 

2−=l 48148.1 0.8− 74074.4    
88889.0− 0.8−1− 14.22222    

0 59259.0−  0.16  96296.18−  2=i  

1 0 0 0 
2 0 0 0 

 
TABLE 9. DERIVATIVES FOR CONSTRUCTING THE JACOBIAN MATRIX 

 ( )[ ] ( )jiijii x
xx

x +−−
+

−
+−− Ψ′

∂
∂

∂
∂

⋅Ψ′ 32,3
33

2
32,3

l

 

0=j  1 2  

2−=l 0 0 0  
1− 0 0 0  

0 8.0 0 0 
0=i  

0.4− 0.16− 0.4−1    

0.4− 0.4−2 16.0   

2−=l 0 0 0  

0.4− 0.16−1− 4.0    
0 0 32.0 0 
1 0.4  0.16−  0.4−  

1=i  

2 0 0 0 
2−=l 44444.0− 0.4 77778.1−    

44444.0 0.4− 77778.1−1−     

0 0 0 55556.3  2=i  

1 0 0 0 
2 0 0 0 

 
TABLE 10. DERIVATIVES FOR CONSTRUCTING THE JACOBIAN MATRIX 

iu
xx −

+

δ
∂
∂

∂
∂

3
2

33 l

  

0=i 1 2  
2−=l 0 0 0.977778  

53339.4−0 37.2  1−  
2.49− 0.24−0 3.55564   

2.13−1 37.2 0  
2 12.0 0 0 
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TABLE 11. DERIVATIVES FOR CONSTRUCTING THE JACOBIAN MATRIX 

∑
=

−
+

− δ
∂
∂

∂
∂

δ
2

0
3

2

33
3

2

i
ii u

xx
u

l

  

2−=l 0.78222  
94667.25−1−   
15549.81−0  

32000.821  
00000.242  

 
TABLE 12. DIAGONAL ELEMENTS OF THE JACOBIAN MATRIX 

3

3
2

3
3

2

3

3
2

3

3
22

03

3
3,3 x

u
x

u
x
u

x
u

x
fD i

i
ii

i ∂
δ∂

∂
∂

δ+
∂
δ∂

∂
δ∂

∑=
∂
∂

= −

+
−

+

−−

=+
+

lll
l   

2−=l 1.24444  
64000.28−1−   

376438.48 q+−  0 

00000.681  
60000.812  

 
9. NUMERICAL EXAMPLE FOR CHOOSING THE SMOOTHING PARAMETERS  

 
TABLE 13. THE SET OF EMPIRICAL AND SMOOTHED DATA SYSTEM  

*
Kx *

KuKξ KηK      

44301.0−1 0.0 10.2 9.79926  
2 1.0 8.4 0.86080 8.56901 
3 1.5 8.1 1.46634 8.20335 
4 2.0 7.5 2.05231 7.98061 
5 2.5 7.9 2.56754 7.91858 
6 3.0 7.8 3.04186 7.96851 
7 3.7 8.6 3.83898 8.16074 
8 5.0 8.3 4.83828 8.06250 
9 6.5 6.0 6.68653 6.07335 

10 8.0 3.4 8.23354 3.47118 
11 1.0 0.2 10.05684 0.19294 

93984.7=∞D 18974.0* =q 55334.0* =p    
 

TABLE 14. QUANTITIES FOR CHOOSING THE SMOOTHING PARAMETER 

∞

+
Κ
Κ

D
D

u

u

0
p  uΚ D    

10.0 0.09519 1.63643 0.21257 
5.00.10 0.16648 1.24534 0.16831  

*p 0.71943 0.61642 0.12767  
5.00.10 − 1.19108 0.42017 0.13582  

10.10 − 2.62681 0.15847 0.20286  
36061.140 =Κu

50.10 −  0.00000 1.00000  
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TABLE 15. QUANTITIES FOR CHOOSING THE SMOOTHING PARAMETER 

∞

+
Κ
Κ

+
Κ
Κ

D
D

x

x

u

u

00

q  xΚ D    

10.0 0.00102 0.59246 0.12466 
0.1 0.04610 0.49391 0.12327  
*q 0.36385 0.37265 0.10569  

10.10 − 0.72650 0.32376 0.10820  
20.10 − 7.08487 0.15582 0.23902  

84478.410 =Κ x
30.10 −  0.05197 1.05664  

 

 
FIGURE 1. CHOOSING THE SMOOTHING PAREMETERS 

 
10. NUMERICAL EXAMPLE FOR MESH GENERATION  

 
FIGURE 2. A GRID FOR COMPUTATIONAL FLUID DYNAMICS (CFD) SIMULATIONS 
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11. CONCLUSIONS 

  
The idea of the presented method has been based on an extension of Gaussian least 

square polynomial. It is applicable to smooth empirical data system which is loaded by errors 
of normal probability distribution, and to fit a curve differentiable up to the rth order 
derivatives onto a set of smoothed empirical data system. The method purposed can be 
used in different fields of mathematical and engineering sciences as well as in the field of 
mesh generation techniques, especially when a discontinuous function has to be substituted 
by a continuous one. 
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