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ABSTRACT:  In this article we present a computational method for a parallelepipedically 
truncated modeling of the four-dimensional normal distribution. Our goal was to prepare a 
functional algorithm that transforms the normal distribution in its truncated counterpart. We 
suggest a method of truncation in which the limits are determined applying the least squares 
method, under the conditions in which the corresponding probability density approximates 
ever better the numeric data. Calculations have been done in Matlab Computer Algebra 
System.  
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probability distribution, normal distribution, least squares method, order statistics. 
 
 
 

1. INTRODUCTION 
 

According to the three-sigma rule, in certain problems in probability theory and 
mathematical statistics, an event is considered to be practically impossible if it lies in the 
region of values of the normal distribution of a random variable at a distance from its mean 
value of more than three times the standard deviation (see [7]). 

Let X  be a normally ( )2,N σμ   distributed random variable, where μ is the mean value 
and σ is the standard deviation. For any ,    0k >

 

{ } ( ) 1k2kXP −Φ=σ<μ−                                                    (1)  
                          

where  is the distribution function of the standard normal law.  ( ).Φ
Whence, in particular, for  it follows that  3k =

 

{ } 99730.03X3P =σ+μ<<σ−μ                                              (2) 
and, obviously 

{ } 00270.03XP =σ>μ−                                                      (3) 
 

This circumstance is sometimes used in certain problems of probability theory and 
mathematical statistics, by assuming that the event { }σ>μ− 3X  is practically impossible 

and, consequently, the event { σ<μ− 3X } is practically certain.   
Starting from this rule, arose the idea of truncating the normal distribution (see [4]), the 

new function being null without a finite interval, which includes the mean value of the 
variable, and preserves the properties of probability density. The aim of this paper is to 
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optimize the limits of truncation, so as the correlation coefficient of the function should be as 
close as possible to one.   

We are going to give in Section 2 the rule of four-dimensional classic normal 
distribution, and the way in which it can be truncated. In order to obtain an optimal 
parallelepipedic truncation corresponding to a set of numerical data, we elaborated an 
algorithm under Matlab Computer Algebra System, which is detailed presented in Section 3. 
The rule of truncated normal distribution, as it is built in this paper, can be used in data 
modeling more efficiently than the classic rule.  Section 4 presents an analysis of the results we 
obtained and  includes the conclusions of the paper.  
 
 2. THE TRUNCATED 4D NORMAL DISTRIBUTION AGAINST THE CLASSIC ONE 
 

The classic normal distribution rule represents one fundamental rule in the theory of 
probabilities, frequently used in the study of natural, social and economical phenomena [1, 
2]. 

Let  be the four-dimensional classic normal distribution rule, 
expressed by  

RRRRR:fclas →×××
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where , , ,   are the standard deviations of variables x, y, z, respectively t, and 

, , ,   represent the mean values of the respective variables. 
xσ yσ zσ tσ

xμ yμ zμ tμ
We are going to approximate this rule by a null function in the exterior of a 

parallelepiped, situated in the vicinity of the mean values of variables x, y, z, respectively t.  

Let , be of form RR:ftrunc 6 →
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where K will be determined by imposing the condition that this function be a probability 
density.  

In order to meet our purpose, the function )t,z,y,x,t,z,y,x(ftrunc αααα  has to be a 
probability density [3], and therefore has to meet the conditions   

  
  0)t,z,y,x,t,z,y,x(ftrunc ≥αααα                                                    (6) 

and 

∫ ∫ ∫ ∫
∞

∞−
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∞−
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∞−

∞

∞−

=αααα 1dtdzdydx)t,z,y,x,t,z,y,x(ftrunc                               (7)  

              
hence, for K results the expression     
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 In order to determine an optimal modeling of the data, we processed them both 
classically and in the truncated way. Constants xα , yα , zα  and tα  are going to be 
determined by minimizing the error resulted from the use of the truncated function. The 
necessary condition is that the sum of the squares of the differences between the theoretical 
values of the function )t,z,y,x,t,z,y,x(ftrunc αααα  and the experimental values u, be 
minimum [5, 6]. That is, function 

( )∑
=

−αααα=αααα
n

1i

2
iiiii u)t,z,y,x,t,z,y,x(ftrunc)t,z,y,x(F                        (9) 

shall be minimized with respect to , xα yα , zα  and tα . 
 
3. AN ALGRITHM FOR TRUNCATED 4D MODELING USING  
    MATLAB COMPUTER ALGEBRA SYSTEM 
 
Our goal was to prepare a functional algorithm that transforms the normal distribution 

in its truncated counterpart.  In this method of truncation, the limits are determined applying 
the least squares method, under the conditions in which the corresponding probability 
density approximates ever better the numeric data. The algorithm is presented hereinafter. 

 
 clc,clear; 
 

First, the input data set that is going to be processed, where the first four lines 
represent the values of the independent variables x, y, z and t, and the last line represents the 
independent variable u.  

  
x=[-0.3775 0.3148 0.9409 -0.7420 -0.6355 0.5690 0.9863 -1.0039...      
    1.4725 -1.3493 -1.1678 0.9312 -0.9898 -0.6841 0.4978]; 
y=[-0.2959 1.4435 -0.9921 1.0823 -0.5596 -0.8217 -0.5186 -0.9471...     
    0.0557 -0.2611 -0.4606 0.0112 1.3396 -1.2919 1.4885]; 
z=[-1.4751 -0.3510 0.2120 -0.1315 0.4437 -0.2656 0.3274 -0.3744... 
    -1.2173 0.9535 -0.2624 -0.6451 0.2895 -0.0729 -0.5465]; 
t=[-0.2340 0.6232 0.2379 0.3899 -0.9499 -1.1878 0.2341 -1.1859... 
    -0.0412 0.1286 -1.2132 0.8057 1.4789 -0.3306 -0.8468]; 
u=[0.6630 -0.8542 -1.2013 -0.1199 -0.0653 0.4853 -0.5955 -0.1497... 
    -0.4348 -0.0793 1.5352 -0.6065 -1.3474 0.4694 -0.9036]; 
    
nv=length(x); 
  

The program calculates the mean value and the standard deviation of the 
considered variables. 

 
mx=mean(x);my=mean(y);mz=mean(z);mt=mean(t);mu=mean(u);        
sx=std(x,1);sy=std(y,1);sz=std(z,1);st=std(t,1);su=std(u,1);    
    
The probability density function of the four-dimensional normal 

distribution is given now. 
 
fc=@(x,y,z,t)(normpdf(x,mx,sx).*normpdf(y,my,sy).*normpdf(z,mz,sz).*...

normpdf(t,mt,st)); 
  

We have started the procedure of calculating the truncation limits with eight initial 
guess values, far away from the solution and the program compute the limits in four-
dimensional space. 

 
fmin=10^10;F=0; 
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alfa_xi=0.0; alfa_xs=0.6; alfa_yi=0.15; alfa_ys=0.35; alfa_zi=0.05; 

alfa_zs=0.65; alfa_ti=0.01; alfa_ts=0.25; 
  
fx=@(x)normpdf(x,mx,sx); 
fy=@(y)normpdf(y,my,sy); 
fz=@(z)normpdf(z,mz,sz); 
ft=@(t)normpdf(t,mt,st); 
   
nt=4;  
for i=1:nt+1 
    alfa_x(i)=alfa_xi+(i-1)*(alfa_xs-alfa_xi)/nt; 
    for j=1:nt+1 
        alfa_y(j)=alfa_yi+(j-1)*(alfa_ys-alfa_yi)/nt; 
        for k=1:nt+1 
            alfa_z(k)=alfa_zi+(k-1)*(alfa_zs-alfa_zi)/nt; 
            for s=1:nt+1 
                alfa_t(s)=alfa_ti+(s-1)*(alfa_ts-alfa_ti)/nt; 
                  xinf=mx-alfa_x(i)*sx; 
                  xsup=mx+alfa_x(i)*sx; 
                  yinf=my-alfa_y(j)*sy;   
                  ysup=my+alfa_y(j)*sy; 
                  zinf=mz-alfa_z(k)*sz;  
                  zsup=mz+alfa_z(k)*sz; 
                  tinf=mt-alfa_t(s)*st;  
                  tsup=mt+alfa_t(s)*st; 
                 
Next, the four dimensional integral is calculated and the truncated 

probability density function for 4D normal distribution is introduced. 
       

inte=quad(fx,xinf,xsup).*quad(fy,yinf,ysup).*quad(fz,zinf,zsup).* ... 
quad(ft,tinf,tsup); 

                 
ftr=@(x,y,z,t)(normpdf(x,mx,sx).*normpdf(y,my,sy).* ... 

   normpdf(z,mz,sz).*normpdf(t,mt,st)).*... 
   logical((alfa_x(i)*sx).^2-(x-mx).^2>0).*... 
   logical((alfa_y(j)*sy).^2-(y-my).^2>0).*... 
   logical((alfa_z(k)*sz).^2-(z-mz).^2>0).*... 
   logical((alfa_t(s)*st).^2-(t-mt).^2>0);    
  
Applying the least squares method, the algorithm finds the optimal 

truncation limits.    
                     for ks=1:nv            
                     F=F+(ftr(x(ks),y(ks),z(ks),t(ks))/inte-u(ks))^2; 
                end; 
                if F<=fmin 
                    alfa_xf=alfa_x(i); 
                    alfa_yf=alfa_y(j); 
                    alfa_zf=alfa_z(k); 
                    alfa_tf=alfa_t(s); 
                    fmin=F; 
                    intef=inte; 
                    xinff=mx-alfa_xf*sx; 
                    xsupf=mx+alfa_xf*sx; 
                    yinff=my-alfa_yf*sy;  
                    ysupf=my+alfa_yf*sy; 
                    zinff=mz-alfa_zf*sz;   
                    zsupf=mz+alfa_zf*sz; 
                    tinff=mt-alfa_tf*st;  
                    tsupf=mt+alfa_tf*st;  
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                end; 
                F=0; 
            end; 
        end; 
    end; 
end; 

The final results are:  
alfa_xf, alfa_yf, alfa_zf, alfa_tf 

xinff, xsupf, yinff, ysupf, zinff, zsupf, tinff, tsupf. 
  

This values substituted in expression (8) and respectively (5), lead to the calculation of 
the K parameter and to the four-dimensional normal probability density expression. 
              

K=quad(fx,xinff,xsupf).*quad(fy,yinff,ysupf).*quad(fz,zinff,zsupf).*...
quad(ft,tinff,tsupf) 

  
ft=@(x,y,z,t)(1/K).*(normpdf(x,mx,sx).*normpdf(y,my,sy).*... 
  normpdf(z,mz,sz).*normpdf(t,mt,st)).*... 
  logical((alfa_xf*sx).^2-(x-mx).^2>0).*... 
  logical((alfa_yf*sy).^2-(y-my).^2>0).*... 
  logical((alfa_zf*sz).^2-(z-mz).^2>0).*... 
  logical((alfa_tf*st).^2-(t-mt).^2>0);       
  

The correlation coefficient and the standard deviation of the four-dimensional normal 
probability density function are 

  
 for i=1:nv 
     Asup(i)=(u(i)-fc(x(i),y(i),z(i),t(i)))^2; 
     Ainf(i)=(u(i)-mu)^2; 
 end; 
 r_fclas=sqrt(1-sum(Asup)/sum(Ainf))   
 sigma_fclas=sqrt(sum(Asup)/nv)   
   
 for i=1:nv 
     Asuptr(i)=(u(i)-ft(x(i),y(i),z(i),t(i)))^2; 
 end; 
 r_ftrunc=sqrt(1-sum(Asuptr)/sum(Ainf))   
 sigma_ftrunc=sqrt(sum(Asuptr)/nv)   
   

The graphic reprezentation of the probability density function of the four-dimensional 
normal distribution and its truncated counterpart can be obtained using the next program 
code. 

[XC,YC]=meshgrid(xinff-1:0.1:xsupf+1,yinff-1:0.1:ysupf+1); 
Z=fc(XC,YC,mz,mt); 
figure,mesh(XC,YC,Z,'EdgeColor','black'),alpha(0.5),grid on 
  
[XT,YT]=meshgrid(xinff-1:0.1:xsupf+1,yinff-1:0.1:ysupf+1); 
T=ft(XT,YT,mz,mt); 
figure,mesh(XT,YT,T,'EdgeColor','black'),alpha(0.5),grid on 
  
return 
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4. DISCUSSIONS AND CONCLUSIONS 

 
The domain in which the truncated function we thus determined has non-null values is  
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As both the normal classic function and the truncated one we obtained are 4-
variable functions, for a more suggestive graphical representation, we successively 
substituted two variables by their mean values, which resulted in four partial functions.    

Figure 1 presents in part a, the representation of the classic normal distribution and in 
the part b, the partial truncated normal distribution, considering variables x and y, variables z 
and t being substituted by their mean values mz, respectively mt. The scale may vary 
depending on the data set which have been computed. 
                                      a.                                                                          b. 

 
Figure 1.  The Probability Density Function of the 4-dimensional normal distribution (a), and for 
the truncated normal distribution (b). The scale depends on the considered input data set. 

 
Runing the program presented in the paper, one can conclude that the rule of 

parallelepipedically truncated normal distribution, obtained under the given conditions, 
preserving the properties of a probability density, leads to a higher correlation coefficient and 
to a smaller deviation than in the case of the classic distribution. 

The 4-dimensional normal truncated distribution is a continuous probability distribution 
and it can be used in modeling certain problems. 
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