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ABSTRACT:  
Diffuse Large B-cell Lymphoma (DLBCL) is curable in about 40% of patients. The treatment 
(chemotherapy or stem cell support) of DLBCL depends on the distinction of the significant subtypes 
of this kind of cancer and influences on the cured/fatal outcome of the disease. Molecular analyses of 
clinical heterogeneity in DLBCL focus on individual genes, some of which are correlated with DLBCL 
treatment outcome. The paper proposes a methodology of using a radial basis function (RBF) neural 
network for classification of cured/fatal lymphomas on the basis of gene expression data. An 
immunological approach uses the training data in order to initialize the radial basis functions – their 
number and the positions of centers. Two variants of a cancer outcome predictor (a conventional RBF 
network and the proposed here immunity based one) are tested in MATLAB environment on 58 data 
samples (32 cured and 26 fatal) available in the literature. The high prognostic accuracy of the 
predictors is confirmed by leave-one-out cross-validation test. 
KEYWORDS: 
gene expression profiling, diffuse large B-cell lymphoma (DLBCL), discrete artificial immune network, 
radial basis function neural network. 

 
 
 
 

1. INTRODUCTION 
 

Most outcome prediction models of Diffuse Large B-cell Lymphoma (DLBCL) do not 
identify the molecular basis of clinical heterogeneity of this kind of cancer and could not 
determine the proper therapeutic regimens (doses of conventional chemotherapeutic agents 
and stem-cell support). There exist correlations between some of genes and DLBCL 
treatment outcome. Different machine learning methods have been used for achieving a high 
classification and prognostic accuracy: hierarchical clustering with unsupervised learning [1]; 
'weighted voting' based classification with supervised learning [2]; support vector machines 
[2]; clustering methods (k-means and c-means), neural networks, and fuzzy-neural hybrid 
methods [3]; evolving connectionist systems (ECOS) [4], etc. Recently artificial immune 
networks have been used to predict cured/fatal DLBCL outcome [5, 6, 7, 13]. For solving such 
significant problem it is helpful to apply a variety of approaches, because each of them has 
own advantages and drawbacks and is more or less proper to be used in a particular 
situation.  

Radial Basis Function (RBF) neural networks are powerful approximators of 
multivariable nonlinear continuous functions. Their simple two-layer feed-forward 
architecture and learning algorithm based on the solution of a linear regression problem lead 
to a fast training process. The performance of RBF networks depends on the number and 
positions of the radial basis functions in the hidden layer. De Castro and Von Zuben [8] have 
proposed an artificial immune network (aiNet) developed to perform automatic data 
compression, clustering and classification problems. Then they have refined this algorithm 
and directly applied it to the problem of defining RBF network centers [9]. 

The purpose of the paper is to propose a methodology for a Lymphoma cancer outcome 
prediction using a RBF neural network whose hidden layer neurons are tuned by immunity 
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based algorithm [9]. The prediction model is based on gene expression data. Two variants of 
a cancer outcome predictor (a conventional RBF network and the proposed here immunity 
based one) are tested in MATLAB environment on 58 data samples (32 cured and 26 fatal) 
available in [2]. The high prognostic accuracy of the predictors is confirmed by leave-one-out 
cross-validation test. 

 
2. GENE EXPRESSION PROFILING OF DLBCL 

 

In this section some gene expression profiles available in [2] are represented in short in 
order to make easier the describing and understanding the proposed an immunity based RBF 
network for DLBCL outcome prediction. Twelve-level grey scale modification [6] of the 13 
genes, determined in [2] as important and related to the disease outcome, are shown in 
Figure 1. The genes expressed at higher levels in cured DLBCL are shown on top while the 
genes that are more highly expressed in fatal disease are shown on the bottom. Black 
indicates high expression, white - low expression. Each column is a sample (a patient) and 
each row is a gene. The first rows of the cured and fatal sections show an idealized expression 
profile. Expression profiles of the 32 cured DLBCLs are arranged on the left, while profiles of 
the 26 fatal tumors are on the right.   
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Figure 1. Thirteen genes included in the DLBCL outcome model [2], shown in 12-level grey scale 

modification [6]. (The description and identifiers of the genes are given in [2]) 
 

3. RBF NEURAL NETWORK 
 

A radial basis network is a feed-forward network with two layers: a hidden layer of 
radial basis neurons and an output layer of linear neurons (Figure 2). The hidden neurons 

apply a nonlinear transformation 
from the input space into the hidden 
space. They are locally tuned and their 
responses are outputs of radial basis 
functions. The linear output neurons 
implement a weighted sum of the 
hidden neuron responses. The RBF 
network’s excellent approximation 
capabilities have been studied in [10]. 
Let the input vector be 

),...,,( 21 pxxx=x , and the RBF 

network outputs are computed as 
follows: 
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Figure 2. RBF neural network [9] 
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weight vector for the output neuron ,  is the number of network output neurons, and 

 is the vector of basis functions. The output of each radial basis function is 

i o
T

21 ),...,,( qggg=g
)||),(|| jjj hg σcx −= ,  qj ,...,1= ,                   (2) 

where  is the basis function, )(⋅jh |||| ⋅  is a norm (the Euclidean norm) defined on the input 

space, - a center (a prototype vector) p
j ℜ∈c j , and jσ - the standard deviation (dispersion). 

Let the problem to solve determines an RBF network with  inputs and one output 

( ). Consider a set of 

p
1=o R  input data points ( ) and the desired output values are 

available for all these 
ix

R  data points ( ). Each basis function can be centered on one of these 

data points, i.e. the number of centers is equal to the number of data points  [9]. The 
introduction of the full training set into the Equation (1) gives rise to the following matrix 
notation which shows the linearity of the weights determination problem: 

id
Rq =

dwH = ,         (3) 

where  is the desired response vector,  - the output weight vector, and  is an d w H RR×  
interpolation matrix. The solution of Equation (3) is  

dHw 1−= .      (4) 

The prerequisite for the existence of  is that the 1−H R  data points are distinct [9]. But 
the setting-up  is not a god strategy for the training of RBF networks because of:  (1) 
poor generalization to previously unseen data, (2) high likelihood of obtaining an ill-
conditioned matrix  due to a great amount of redundant data (linearly dependent vectors) 
[9]. To overcome these drawbacks, a new set of 

Rq =

H
Rq <1  basis functions (assumed to be 

linearly independent) has to be defined. In this case the solution  is given by [9] ∗w
dHHHw T1T )( −∗ = .                  (5) 

In this paper a fixed radial basis function is chosen to be an activation function of the 
hidden neurons. The locations of the centers are chosen here from the training data set using 
an immune-inspired approach [9]. A Gaussian function with standard deviation fixed 
according to the spread of the centers is used for the RBFs: 

⎟
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where  is the number of centers (hidden neurons), 1q 1max 2/ qdj =σ - the standard 

deviation (the same for all basis functions) [9],  - the maximum distance between the 

chosen centers,  is the input vector, and  is the 
maxd

x jc j -th center location. This choice for jσ  

guarantees that the individual radial basis functions are not too peak or too flat [9]. 
The proper functioning of an RBF neural network depends mainly on the choice of the 

number and positions of its radial basis function centers. In the paper this choice is made 
using a preliminary compression and clustering of the input data by an artificial immune 
network – aiNet, which will be described in the next sections. 

 
4. IMMUNE SYSTEM: AN OVERVIEW 
 

The body maintains a large number of immune cells - lymphocytes (mainly T-cells and 
B-cells). When an antigen (foreign body) invades the body, only a few of these immune cells 
can recognize the invader. Self/nonself discrimination is the process of distinguishing 
between our own cells and invaders: the immune system is said to be tolerant to those cells 
recognized as self, while the others are eliminated. According to Jerne’s idiotypic network 
hypothesis [11], lymphocytes communicate with each other through interaction among 
antibodies. B-lymphocytes produce ‘Y’ shaped antibodies that recognize an antigen like a key 
and lock relationship. The structure of the antigen and the antibody is shown in Figure 3, 
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where the part of the antibody that recognizes (matches) the corresponding antigen 
determinant is known as V-region. It is a variable (V) region, which can alter its shape to 
achieve a better match (complementarity) with a given antigen, and the affinity of their 
match measures the strength and specificity of the ‘antigen-antibody’ interaction. Antibodies 
also have antigenic characteristic and a key and lock relationship also exists between 
different species of antibodies. Thus the stimulation and suppression chains among 
antibodies form a large-scaled network. 

The immune system learns to increase the size of population and the affinity of those 
lymphocytes that have recognized any antigen. Secretion of antibodies requires that B cells 

become activated, undergo proliferation (cloning) and 
then differentiate into plasma and memory cells. A 
clone is a cell (or a set of cells), which is the progeny of 
the same cell. A memory cell is the cell with high 
affinity with the antigen that will be saved for a faster 
and stronger response to a previously seen (or near) 
antigen. The initial exposure of immune system to an 
antigen leads to production of small clones of B cells, 
each producing antibody with different affinity. The 
immune response to secondary encounters is 
enhanced by storing some high affinity antibody 
producing cells from the first infection (memory 
cells). They form a large initial high affinity clone for 

subsequent encounters. Affinity maturation is the process of growth in concentration and 
affinity of those cells that recognize antigens. During maturation random changes 
(mutations) are introduced into the variable region (V) and an increase in the affinity of the 
antibody can be occasionally obtained. These high-affinity cells are kept in the pool of 
memory cells, and those ones possessing receptors with low antigenic affinity, or the self-
reactive cells, must be eliminated or may undergo receptor editing. Hypermutation is a rapid 
accumulation of mutations, which lead to a fast maturation of the immune response. The 
regulation of hypermutation process depends on receptor affinity: cells with low affinity 
receptors may be mutated, while in cells with high-affinity receptors, mutation may be 
gradually inactivated.  

antigen 

antibody 1 

antibody 3 

B-cell 1 

B-cell 3 

antibody 2 

stimulation 

suppression

B-cell 2 

 
Figure 3. Structure of immune network 

The ability of the immune system to adapt its B-cells to new types of antigen is powered 
by a process known as clonal selection, i.e., this is the basic process of pattern recognition 
and selection [12]. Biological clonal selection occurs to the degree that a B-cell matches an 
antigen. A strong match causes a B-cell to be cloned many times, and a weak match – few 
times. These 'clones' are mutated from the original B-cell at a rate inversely proportional to 
the match strength.  

The dynamics of immune network represents the variation in time of the 
concentrations and affinities of network cells. The metadynamics expresses the continuous 
production of novel antibodies and death of non-stimulated or self-reactive cells. The main 
purpose of the immune network theory is to determine internal images, corresponding to the 
individual’s molecular structure, which emerge from a network organization after learning 
the molecular structure of the environment. 

 

5. DE CASTRO & VON ZUBEN’S AINET LEARNING ALGORITHM  
 

In this section, the aiNet learning algorithm is presented in such a way as it has been 
proposed by De Castro and Von Zuben [8]. The aiNet learning algorithm builds a memory set 
that recognizes and represents the data structural organization in compressed form. After 
learning, the aiNet contains clusters which serve as internal images (mirrors) responsible for 
mapping real clusters present in the data set into network clusters. The aiNet architecture is 
represented by final number and spatial distribution of clusters. The interactions of an 
antibody with an antigen and other antibodies are presented by measures of the similarity 
degree (affinity). The ‘antigen-antibody’ (‘antibody-antibody’) affinity is inversely 
proportional to the distance between them. Intra-clonal self-recognizing antibodies are 
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eliminated by a clonal suppression, while network suppression searches for similarities 
between different sets of clones. A suppression threshold controls the specificity level of the 
antibodies and the clustering accuracy: the more specific the antibodies, the less compression 
rate, and vice versa. 

The notation adopted for the description of De 
Castro & Von Zuben’s aiNet learning algorithm, as well as 
the aiNet algorithm are shown in Table 1 and Table 2, 
respectively. Each presented antigenic pattern elicits a 
clonal immune response, according to the aiNet learning 
algorithm. Matrix  represents the network internal 

images of the antigens presented to the aiNet, and matrix 
 determines the connections among network 

antibodies. These two matrixes can be considered as 
network outputs. Figure 4 presents hypothetical 
elements of  (stars) and the corresponding elements 

of  (circles) generated by the aiNet algorithm. 

}{mAb

S

Ag

}{mAb
The clusters of antibodies , obtained after the 

training process, map those of the original data set  in such a way that the number of 
antibodies in the network is much smaller (compressed) than the number of data samples 
(  (Table 2)). These antibodies can be used for centers of the radial basis functions of 
an RBF neural network. 

}{mAb
Ag

Mm <

 
Figure 4. aiNet illustration: learning 
data (stars) and resulting network 

antibodies (circles) 

Table 1. Notation adopted for the description of the aiNet learning algorithm [9] 

 
Ag - population of antigens ( , is a shape-space [9]) 

LMS ×∈Ag S
Ab - available antibody repertoire ( ) }{}{, md

LNS AbAbAbAb ∪=∈ ×

}{mAb - total memory antibody repertoire ( ) NmS Lm
m ≤∈ × ,}{Ab

}{dAb - d new antibodies to be inserted in  ( ) Ab Ld
d S ×∈}{Ab

}{nAb - subset composed of the n  highest affinity antibodies is selected ( ) 
Ln

n S ×∈}{Ab
jf - vector containing the affinity of all the antibodies ),...,1( Nii =Ab  with relation to antigen . The affinity is 

inversely proportional to the ‘antigen-antibody’ distance 
jAg

S - similarity matrix between each pair ji AbAb − , with elements ),...,1,(, Njis ji =  

C - population of  clones generated from  ( ) CN Ab LNCS ×∈C
∗C - vector containing the affinity between every element from the set  with  

∗C jAg
jd - vector containing the affinity between every element from the set  with  

∗C jAg
ζ  - percentage of the mature antibodies to be selected 

jM - memory clone for antigen  (remaining from the process of clonal suppression) jAg
*
jM - resultant clonal memory for antigen  jAg

dσ - natural death threshold 

sσ - suppression threshold 

 
 

Table 2. De Castro & Von Zuben’s aiNet learning algorithm [9] 

 
I. At each iteration, do: 

1. For each antigenic pattern Mjj ,...,1, =Ag , ( Ag∈jAg ), do: 
(a) Determine its affinity Nif ji ,...,1,, = , to all : iAb

,  where NiD jiji ,...,1||,, =−= AgAb||                                                 (7) 

183 

ji,ji Df /1=,
(b) A subset  composed of the n  highest affinity antibodies is selected; }{n

(c) The  selected antibodies are going to proliferate (clone) proportionally to their antigenic affinity ji , 
generating a set C  of clones: the higher the affinity, the larger the clone size for each of the  selected antibodies. 

The total clone size generated for each of the 

Ab
n f ,

n
CN  M  antigens is: 
∑ −=
=

n
NDNroundN )( ,                                                                 (8) 

i
jiC

1
,

where  is the total amount of antibodies in , N Ab )(⋅round  is the operator that rounds towards the closest 
integer, and - the distance between the selected antibody  the antigen , given by (7). ji j

(d) The set  is submitted to a directed affinity maturation process (guided mutation) generating a mutated set 
, where each antibody k  from  will suffer a mutation with a rate k

D , i Ag
C

*C *C α  inversely proportional to the 
antigenic affinity  of its parent antibody: the higher the affinity, the smaller the mutation rate: jif ,

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 



 

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL 
OF ENGINEERING. TOME VII (year 2009). Fascicule 1 (ISSN 1584 – 2665) 

 
 

)( kjkkk CAgCC −+=∗ α ; jik f ,/1=α ; CNk ,...,1= ;                    (9) Ni ,...,1=
(e) Determine the affinity jkjk Dd ,, /1=  among  and all the elements of : jAg ∗C

C
(f)  From , re-select ζ % of the antibodies with highest  and put them into a matrix  of clonal 

memory; 

jjk NkD ,...,1||,, =−= ∗ AgC||  k .                                         (10) 
∗C jkd , jM

(g) Apoptosis: eliminate all the memory clones from  whose affinity : jM d, σ>jkD
(h) Determine the affinity  among the memory clones: kis , kis kjijki ,||,|| ,,, ∀−= MM   (11) 

(i) Clonal suppression: eliminate those memory clones whose   . s, σ<kis
(j) Concatenate the total antibody memory matrix with the resultant clonal memory  for :      

; 

∗
jM jAg

];[ }{}{
∗← jmm MAbAb

2. Determine the affinity among memory antibodies from  }{mAb
kis k

m
i
mki ,||,}{}{, ∀−= AbAb||  .                               (12) 

3. Network suppression: eliminate all the antibodies such that   . s, σ<kis
4. Build the total antibody matrix ];[ }{}{ dm AbAbAb ←  

II. Test the stopping criterion. 

 
6. CANCER OUTCOME PREDICTOR USING AN AINET-BASED RBF NETWORK 
 

Consider a cancer outcome prediction task. An aiNet-based RBF network is proposed to 
predict the cured/fatal DLBCL outcome (and therefore the proper treatment) on the basis of 
gene expression of 13 genes. The RBF network classifies patients into two categories: category 
cured - people who will survive under conventional chemotherapy treatment, and category 
fatal – people who will die despite of the treatment. An aiNet is used for a preliminary input 
data processing aiming to determine the number and positions of the radial basis functions of 
the neural network. Each gene expression sample of DLBCL (a column in Figure 1) works as 
an antigen. The antigen is identified by L-position string ( 13=L ), containing 12-level grey 
scale colours in each position. The grey colours are scaled between white and black, and they 
are replaced in calculations with corresponding values, linear-proportional in the interval 

. Antibodies are identified by the same type of characteristics (L-position strings). After 
training the aiNet discovers clusters in the cured and fatal classes DLBCLs. These clusters are 
compressed images of gene expression data, imprinted on aiNet as memory antibody sets. 
These memory antibodies can be used to determine the number and positions of the radial 
basis functions’ centers.    

]1;0[

As it is proposed in [13] the Euclidean distance measure is used for determining the 
distance between the antigen and any antibody (and between each two antibodies):  

( ) NiD
L

k
kjkijiji ,...,1,||

1

2
,,, =−=−= ∑

=

AgAbAgAb|| .   (13) 

The total clone size  for each of the CN M  antigens is calculated as in [13]: 

∑
=

−=
n

i
jiC NLDNroundN

1
, ))/(( .            (14) 

The mutation rate kα  in (9) is modified increasing search space by introducing a random 

signal as it is follows: )5.0(5.0/, −+= randLD jikα ,                  (15) 

where  are uniformly distributed random numbers. After mutation, if the digital 

value corresponding to any position in the strings of  is less than 0 or great than 1, it 
adopts the boundary value 0 or 1, respectively.  

]1;0[∈rand
*C

To design the memory cells (internal images), the aiNet learning algorithm (with 
modifications made above) has to be applied to the gene expression data of cured and fatal 
patients. The number of distinct clusters of antibodies depends on the choice of the network 
parameters. The more generalist the antibodies, the more parsimonious the network with 
relation to the number of antibodies. After training, the memory cells of the aiNet represent 
the internal images (in compressed form) of the antigens presented as training samples. 
These memory cells can determine the number and positions of the radial basis functions’ 
centers, i.e.,   and  , mq =1 jmj }{Abc ← 1,...,1 qj = . Then the RBF network can be trained to 

determine the weights  by (5). The input training (and testing) data consists of the 13-∗w
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gene expression samples of the 58 DLBCLs. The corresponding output data is available: the 
belonging to the two classes of DLBCLs – the 26 cured and 32 fatal patients. But instead of 
this data, the information containing in the idealized gene expression profile (Figure 1) is 
used as follows. The idealized profile considers the first six genes as expressed in survival 
patients and no expressed in fatal patients, and the other seven are determined contrary 
(Figure 1). This hypothesis gives reason the output training data to be determined as follows: 

Rikkkkd
k

i
k

ii ,...,2,1,)()(
13

7
fatal

6

1
cured =−= ∑∑

==

xx ,    (16) 

where the positive weight coefficients 1cured =k  and 7/6fatal =k  make the influence of the first 

six genes (high-expressed in cured DLBCLs and low-expressed in fatal ones) commeasure 
with that of the rest seven (which are expressed contrary). Having in mind the idealized gene 
expression profiles, it is expected that  (16) takes positive values in the cured DLBCLs, and 

negative – in the fatal ones. 
id

 

7. RESULTS AND DISCUSSIONS 
 

The proposed method of using an aiNet-based RBF neural network for DLBCL outcome 
prediction was applied to the 58 samples, shown in Figure 1. Leave-one-out cross-validation 
built a predictor by removing one sample and then using the rest as an input set to be 
compressed and clustered by aiNet. The removed sample was used for testing and evaluating 
the performance of the predictor. Additionally, the results were compared with those 

obtained by a predictor using a conventional RBF 
neural network. The two predictors were investigated in 
MATLAB environment.  

The conventional RBF network, used here, creates 
neurons one at a time [14]. At each iteration the input 
sample which will result in lowering the network error 
the most, is used to create an RBF neuron. The error of 
the new network is checked, and if it is low enough the 
design is finished, otherwise a new neuron is added. 
This procedure is repeated until the sum-squared error 
falls below predetermined value ( ), or the 
maximum number of neurons is reached. For 
simulation of the predictor using a conventional RBF 
network the following parameters were used:  

goal

02.0=goal and 1=spread . The  constant 
determines the wide of the RBF (the width of an area in 
the input space to which each neuron responds). The 
most of the aiNet training parameters were chosen 

heuristically: , , , 

spread

50=N 4=n 5=d 12=m , 0.2ζ = , 2/5.0σd L= , 2/25.0σs L= , 

. The average compression rate of the resulting aiNet was 46.7%. 5=sGeneration
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Figure 5. Cured/fatal prediction using:  
(a) conventional RBF network, (b) aiNet-

based RBF network 

Table 3. Predicted class vs. observed one  
(conventional RBF network) 

Table 4. Predicted class vs. observed one 
 (aiNet-based RBF network) 

  Predicted Class  
  Cured Fatal  

Observed Cured 30 2 32 
Class Fatal 6 20 26 

  36 22 58  

  Predicted Class  
  Cured Fatal  
Observed Cured 30 2 32 
Class Fatal 5 21 26 
  35 23 58  

 

The performance of the two DLBCL outcome predictors is shown in Figure 5, Table 3 
and Table 4. In Figure 5 the cured cases of DLBCL are represented with values '1', while the 
fatal cases – with '-1' (The result is obtained as a sign function over the output  of the RBF 

network, i.e. ). For both predictors two patients (samples No.1 and 31) from observed 
class “cured” were predicted wrong as “fatal”, while five patients (samples No.35, 38, 44, 46 
and 48) from class 'fatal' were predicted as 'cured'. Additionally, the conventional RBF 

y
)sign( y
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network predicts wrong one more patient (the sample No.47) from observed class 'fatal' as 
'cured'. The proposed aiNet-based RBF network predicts 51 out of 58 samples correctly. 
87.9% prognostic accuracy (93.8% class cured and 80.8% class fatal) is achieved. The 
predictor using a conventional RBF network performs a little worse (86.2%: 93.8% class 
cured and 76.9% class fatal) than the proposed one. The performance of the aiNet-based RBF 
network prognostic model is better than the model reported by M. Shipp et al. [2] - 87.9% 
versus 75%. A little better prognostic results obtained by immune predictors have been 
reported in the literature, but the predictor either has simultaneously used all the 58 samples 
for the design and testing (not leave-one-out cross-validation test) [6] or the solution has 
been very sensitive to some heuristically determined parameters of aiNet (a cutting 
threshold, which is not used here) [13]. 

 

8. CONCLUSIONS 
 

The paper presents a methodology of using an aiNet-based RBF neural network for 
solving a classification problem oriented to Lymphoma cancer prognosis. A conventional 
RBF network classifier is additionally simulated for comparison with the proposed one. They 
both show a high prognostic accuracy, 87.9% for the proposed and 86.2% for the 
conventional, determined by the 58 leave-one-out cross-validation tests. The preliminary 
compression and clustering the gene expression data by aiNet determine automatically the 
appropriate centers of the RBFs and thus improve the performance of the RBF network. The 
future work will include investigations on the automatic defining not only the number and 
positions of RBF centers, but also the dispersions jσ , different for each of the RBF neurons, 

with a purpose to improve the accuracy of the cancer outcome predictor.  
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