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ABSTRACT: 
This paper addresses the problem of damage identification in beam-like structures on the base of bending 
frequency changes. The identification of damage location and its depth is performed by use of regression relations 
between changes in natural frequencies and damage parameters. Input data for establishing the regression 
relations are collected using numerical analysis (FEA) of the beam structure with and without damage. The 
damage is simulated as a narrow open notch perpendicular to the beam axis. The efficiency and limitations of the 
proposed technique are assessed through a series of damage scenarios.  
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1. INTRODUCTION 
  
Identification of damages in structures and components is an important aspect of their proper 

operation. Failure to detect damages has various consequences, and they vary based on the application 
and importance of the structures and components. A number of non-destructive techniques are 
available now to detect faults and defects in a structure. Nevertheless, great efforts are still put towards 
developing new, more reliable, efficient, and less tedious detection techniques. The most common of 
these methods is the vibration based damage detection and identification. 

The basic idea behind the vibration based identification technique is that any change in the 
physical properties of a structure caused by the presence of a defect will directly cause some changes in 
the modal parameters, such as natural frequencies, damping factors, and mode shapes. These changes 
can be measured using the available modal testing methods. On the other hand, having sufficient data 
from numerical analysis enables an engineer to derive the regression relations that correlate specific 
shifts in one or more of the modal parameters as a function of the size and location of defects, [6]. 

Numerous methods have been proposed to identify damage parameters in structures. The 
method of using experimental modal analysis for detecting cracks appeared in the 1940s. A 
comprehensive survey of the available literature was given by Dimarogonas [4] and Doebling et al. [5]. 
These reports reviewed various technical literatures on detection and identification of structural 
damage using vibration based testing. Salawu [12] presented identification techniques that use only 
frequency information to identify damage in structures. 

This paper proposes a technique to identify the location and magnitude of a damage in a beam-
like structure using numerical analysis and nonlinear regression. The changes that occur in the first 
four of its lowest bending frequencies are used for the identification of the crack parameters. 

 
2. PROPOSED IDENTIFICATION TECHNIQUE 

 
2.1. Formulation of the problem 
The fundamental idea underlying the process of crack identification is based on the fact that a 

change in physical parameters of the structure causes a change in its modal parameters. This fact is 
represented by the following matrix equation for undamped natural vibrations, Eq.(1): 

            0KqqM =+&&                                                           (1) 

where  is the mass matrix, M K is the stiffness matrix, and  and  are the acceleration and 
displacement vectors, respectively. The eigenvalues of Eq. (1) correspond to the undamped natural 
frequencies of the structure. 

q&& q
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A damage that occurs in a structure causes a change in mass and stiffness matrices and, 
consequently, in the natural frequencies. Some theoretical models are established to determine these 
changes in structural matrices, for instance in [1, 2, 3].  These procedures lead to differential equations 
that usually require a great effort to be solved, whereas a numerical analysis of a damaged structure 
can provide the values of these changes much faster and easier. Using the frequency shifts of several 
natural frequencies, it is possible to determine the magnitude and location in many cases of a single 
damage, [12]. 

 
2.2. Numerical analysis of a free-free beam 
The technique proposed in this paper will be shown considering a simple case of a free-free 

beam, Fig.1. Let the numerical model of the beam has the following properties: length Lb=400 mm, 
height H=8,16 mm, width B=8.12 mm, modulus of elasticity E=2.068x1011 Pa, mass density �=7820 
kg/m3, and Poisson’s coefficient �=0.29. The beam is modeled using solid elements in software I-
DEAS Master Modeler 9, Fig.2. The damage is simulated as a narrow open notch perpendicular to the 
beam axis. The location of the damage is Ld , its depth is a, and the width of the notch is 1mm. 

Relative location L = Ld / Lb and relative depth of the damage D = a / H were varied and the first 
four natural frequencies corresponding to the bending modes of the undamaged and the damaged 
beam were calculated using the numerical model. Due to structural symmetry, the location of the 
notch Ld measured from the left end of the beam was varied from 10 mm to 200 mm in 10 mm 
increments. The depth a of the notch was varied from 1 mm to 4 mm in 1 mm increments. 
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Figure 1. Geometry of the free-free beam with a notch 
 

Then, the relative frequency parameters FI = fI(d) / fI(u) , 
I=1,2,3,4, were calculated. Here, fI represents the Ith natural 
frequency, subscript (d) denotes the damaged beam, and 
subscript (u) refers to the undamaged beam structure. 

The calculated changes of relative frequency parameters FI 
in relation to the relative depth D and relative location L of the 
notch are presented in Fig.3 and Fig.4.  

 
Figure 3. Relative frequency 

parameters f1- f4 versus relative 
depth d (plotted for the case of 

relative damage location l=0.45) 
 
One can see that these 

changes are lower for smaller depth 
of damage, and that the damage 
located at the characteristic node of 
a mode does not affect the frequency 
of that mode. Since the notch in 
numerical model eliminates a 
certain part of the structural mass, there are some places where the influence of the mass change 
prevails over that of stiffness, so in these points the relative frequency change FI is higher than unity. 
In case of a real crack, all relative frequency changes FI would be always smaller than unity (or equal to 
unity in nodal points) since the crack decreases the stiffness of the structure and does not influence the 
structural mass.  

 
Figure 2. Numerical model of the 

beam with the notch 
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Figure 4. Numerically obtained relative frequency parameters f1- f4  

In relation to the relative location l and relative depth d of the notch: F1, (b) F2 , (c) F3, (d) F4
 
2.3. Regression analysis of the frequency changes 
Numerical values of the relative frequency parameters FI, I=1,2,3,4, were taken as the input data 

for establishing the regression curves that describe the relations between the relative frequency 
changes and damage parameters (relative location and relative depth). The software STATISTICA 6.0 
(Nonlinear Estimation option) was used for statistical estimation of these regression relations. 
Nonlinear Estimation computes the relationship between a set of independent variables and a 
dependent variable. It should be emphasized here that Nonlinear Estimation leaves it up to you to 
specify the nature of the relationship; for example, you may specify the dependent variable to be a 
logarithmic function of the independent variable(s), an exponential function, a function of some 
complex ratio of independent measures, etc., [14]. 

The graphical presentation of frequency changes in relation to the relative depth D and relative 
location L, Fig.3 and Fig.4, shows nonlinear behavior. As mentioned above, the choice of appropriate 
nonlinear functions is wide and can be suggested by these graphical presentations. After several 
attempts the best fit can be chosen, taking into account the coefficient of correlation and shape of the 
nonlinear curve.  

Generally, in case of uniform beam-like structures, the best results are obtained when the 
relative frequency changes are expressed by regression relation that include parabolic influence of the 
relative depth D (in this case quadratic) and polynomial influence of the relative location L, Eq. (2): 

FI = 1 - B1(I) D2 ( B2(I) + B3(I) L + B4(I) L2 + … + BN(I) LN-2 ) ,                                   (2) 
where  B1(I) , B2(I) , B3(I) , … , BN(I)  are regression coefficients for the relative frequency parameter FI. 

The following regression relations for the first four relative frequency parameters FI, I=1,2,3,4, 
are obtained for the beam under consideration, Eqs.(3), (4), (5) and (6): 
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The corresponding coefficients of correlation are very high in these cases (0.996 for F1, F2, F3, 

and 0.998 for F4). These regression surfaces are plotted in 3D in Fig.5.  
The largest differences between the values obtained numerically and those calculated by regression 
relations given by Eqs.(3)-(6) are at those locations of the beam where nodes and maximal amplitudes 
of the particular mode shapes occur. This results from the nature of regression relations to smooth the 
data at extreme points. 

The appropriate regression relations can be found  by trial-and-error or intuitively for any type 
of the real beam taking into account its dimensions, material, boundary conditions, etc. Besides the 
numerical simulation for collecting the input data for regression analysis, one can use the values of 
frequency changes for different locations and depths of the damage calculated by expressions that are 
given by some authors, for instance [7, 13]. 

 
 

Figure 5. 3D graphical presentation of regression relations  
Eqs. (3)-(6) for the frequency change parameters F1- F4
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2.4. Identification of damage parameters 
Each of the regression surfaces shown in Fig.5 can be cut by an appropriate horizontal plane that 

corresponds to a specific value of the frequency change. The intersection curve projected on D-L plane 
shows all possible values of D and L that correspond to the same frequency change, Fig.6. The 
procedure is based on the fact that all of the intersection curves should theoretically give a common 
intersection point in D-L plane, which shows the values of damage parameters Dest and Lest, see [10, 11, 
15]. But, the procedure proposed here allows the identification of damage parameters without plotting, 
i.e. visualization of the intersection curves as in [11, 15], which simplifies the identification procedure a 
lot. 

The basic idea for finding the intersection points (i.e. sets of two unknown coordinates D and L) 
in this example (for the regression relations of the form Eq.2) will be shown here. The regression 
relations given by Eqs. (3) and (4) for the first two frequency changes can be written more compactly 
as: 

)(L1F 1
2

11 gDk−= ,                                                                            (7)    

   ,                                                                           (8)                             )(L1F 2
2

22 gDk−=  
by substituting 

 4
6(1)

3
5(1)

 2
4(1)3(1)2(1)1 1(1)1 L B L B L B  L B   B (L)    ,Bk ++++== g ,           (9) 

 5
7(2)

 4
6(2)

3
5(2)

 2
4(2)3(2)2(2)2 1(2)2 L B L B L B L B  L B   B (L)    ,Bk +++++== g  .  (10) 

From equations (7) and (8), it follows: 

)(L/)1()(L/)1(D 222111
2 gkFgkF −=−=                                             (11) 

which results in the relationship that involves only the unknown L: 
     )(L/)1()(L/)1( 222111 gkFgkF −=− .                                 (12) 
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Figure 6. Graphical presentation of finding the intersection point  
Of intersection curves in d-l plane 

 
For the measured frequency changes F1 and F2, one can find all values of the relative location L 

that satisfy Eq.(12), taking into account that complex values of the relative location L are not 
acceptable. The corresponding values of the relative depths D (positive values) can be found directly 
from Eq.(11). Similar relations can be established for other pairs of frequency changes, and an 
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appropriate set of intersection points with real values of L and D can be found. Of course, the proposed 
method of finding the intersection points is valid for regression relations of the form (2), but for other 
types of the best-fit regression relations a feasible way to solve a set of generally nonlinear equations 
should be found.  

Theoretically, changes in two frequencies (basically in the F1 and F2) should be sufficient to find 
the intersection point, i.e. the pair (D,L) that corresponds to the actual damage parameters. However, 
due to inevitable differences between the numerical model and the real structure (modeling errors), 
one should not rely solely on only two measured frequency changes to find the intersection point 
(D,L). It is much safer and reliable to locate this point using more frequency changes, which also 
contribute to the robustness of the technique. Basically, the first four frequencies are shown to be 
sufficient to identify a crack in the beam, [15]. However, in practice, it would be very hard to obtain the 
same intersection point for all four frequency curves as the numerical values of intersection point 
coordinates can differ slightly, Fig.7.  

Also, as shown in Figure 6, there are another intersection points in the D-L plane between the 
curves obtained by a pair of frequency changes, but they are isolated and not confirmed by the other 
frequency changes. 

For that reason, this technique proposes finding three closest intersection points of frequency 
curves, i.e. those that give minimal sum of their distances from their mean value. The coordinates of 
their mean value can be adopted to represent the damage parameters. The only prerequisite here is 
that this mean value should not estimate the damage much beyond the numerically observed ranges of 
L and D (in this example for L=0.025 to 0.5 and D=0.125 to 0.5 ) that are covered by regression 
relations. In such a case, the next combination of three intersection points giving minimal sum of 
distances from their mean value should be appropriate. 

 

Figure 7. Characteristic cases of intersections of frequency curves: 
a) Ideal case; b) special case; c) general case  

(note: the intersection point of f1 and f2 is marked as 12, etc.) 
 

3. NUMERICAL VALIDATION OF THE PROPOSED TECHNIQUE 
 

The proposed procedure will be checked by numerically obtained values of frequency changes. 
These frequency changes could represent the data from a simulated experiment in which the real 
structure and the numerical model match ideally. All errors that appear here are only the result of a 
smoothing property of regression representation and the proposed procedure of finding damage 
parameters by the mean value of three intersection points. 

Numerical example. Let find the parameters D and L of a damage if the frequency changes 
are: F1=0.972339, F2=0.97026, F3=0.998684, F4=0.97827.  

Using the relations given in Eqs.(3) and (4) for the first two frequency changes and similar 
relations for other frequency pairs, the set of all possible  locations L can be found from appropriate 
equations like Eq.(12). The corresponding values of D are then calculated using Eq.(11) for the first two 
frequency changes and similar relations for other frequency pairs. The calculated real values of L and 
positive values of D are given in Table 1. 

The set of 23 calculated intersection points are shown on Fig.8a  in the D-L plane (remember, 
plotting of these points is not necessary). The procedure of finding the closest three points gave the 
following results: Dest= 0,367870 for the relative depth and Lest =0,355564 for the relative location, 
Fig.8b. This estimation is determined by three intersection points of F2, F3 and F4. (No.7, No.16, No. 
21), i.e. by three frequency changes. Additionally, in this case, the intersection points that belong to the 
F1 are very close to the estimated mean value, which also confirms the obtained parameters. 
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Table 1. The values of relative location L and relative depth D calculated 
 for all combinations of the first four frequencies (for numerical example) 

Frequency 
curves 

Point 
No. 

Relative 
depth D 

Relative 
location L 

Frequency 
curves 

Point 
No.       

Relative 
depth D 

Relative 
location L 

F1& F2   -0.442196 F1& F4   -0.356333 

F1& F2   0.036980 F1& F4   0.028417 

F1& F2   0.056247 F1& F4   0.044768 

F1& F2 No.1 0.357032 0.348285 F1& F4 No.10 0.548767 0.239997 

F1& F2 No.2 0.320403 0.567199 F1& F4 No.11 0.340148 0.367285 

    F1& F4 No.12 0.311512 0.411703 

    F1& F4 No.13 0.295111 0.521355 

F1 & F3   -0.332444 F2 & F4 No.14 0.161899 -0.355078 

F1 & F3   0.028788 F2 & F4   0.026855 

F1 & F3   0.052778 F2 & F4   0.044184 

F1 & F3 No.3 0.352057 0.353525 F2 & F4 No.15 0.371219 0.208984 

F1 & F3 No.4 0.328735 0.382536 F2 & F4 No.16 0.367375 0.356630 

F1 & F3 No.5 0.299612 0.535157 F2 & F4 No.17 2.558701 0.476092 

    F2 & F4 No.18 2.466915 0.499526 

F2 & F3 No.6 0.148874 -0.331798 F3 & F4   -1.328760 

F2 & F3   0.028644 F3 & F4 No.19 
0.03063

2 
-0.318502 

F2 & F3   0.052741 F3 & F4   0.028834 

F2 & F3 No.7 0.364841 0.354727 F3 & F4 No.20 1.231357 0.054114 

F2 & F3 No.8 0.400340 0.376023 F3 & F4 No.21 0.371393 0.355336 

F2 & F3 No.9 0.569456 0.536062 F3 & F4 No.22 0.314828 0.383896 

    F3 & F4 No.23 0.195270 0.533383 

Note: Empty spaces in the column D refer to complex values  
 

As the data for frequency changes F1, F2, F3 and F4 used in this example are previously calculated 
values of relative frequency changes for the numerical case of damage with Dact=0.375 and Lact =0.35, 
it follows that the error of estimation is -0,713% for the relative depth and  0.5564% for relative 
location. In absolute values, the estimated location of the damage is 142.2256 mm measured from the 
left end of the beam and the value of damage depth is 2.94396 mm (the actual location is 140 mm and 
the depth 3mm). Due to the free-free beam symmetry, the estimated location also assumes the 
possibility that the damage is located at the same distance from the right end of the beam, but this 
ambiguity (inherent to symmetrical beams) can be eliminated by some other procedures, for instance 
by adding a mass to disturb the beam symmetry. 
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Figure 8. The intersection points for 
the numerical example:  

a) all intersection points; b) magnified 
view on three characteristic intersection 

points and their mean value 
 

The procedure described above was 
repeated for 28 cases of damage parameters 
(7 damage locations with 4 depths) using 
the calculated frequency changes. The 
results of this training examination are very 
satisfactory except for the estimation of 
depth for damages near to the free end, 
where nodes of all four bending modes 
appear (i.e. for small frequency changes), 
Fig.9. 
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FIGURE 9. RESULTS OF DAMAGE IDENTIFICATION USING NUMERICALLY OBTAINED 

FREQUENCY CHANGES  
(      ACTUAL DAMAGE PARAMETERS,      ESTIMATED DAMAGE PARAMETERS) 

 
4. CONCLUSION 

 
The paper shows how damage parameters can be estimated analytically (without plotting 

intersection curves and points) by establishing the appropriate nonlinear regression relation between 
bending frequency changes and damage parameters.  

The accuracy of the technique depends on: 
 the quality of numerical model representing the real structure, 
 the number of numerical simulations used for the estimation of regression relationships, 
 the quality of frequency measurements in real practice. 
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Although the use of regression analysis makes this method approximate, the results are quite 
satisfactory and at least as good as the results obtained by some other methods, for instance in [1, 8, 
9]. The identification of minor cracks would require better mesh refinement and higher number of 
numerical calculations to provide a sufficient number of points for establishing the regression 
relations. Also, measurement of small frequency changes due to minor cracks could impose an 
additional problem in practice.  

A future research would include the extension of the proposed technique to different cross-
section geometries of the beam, the use of frequency data of other classes of vibration modes (axial, 
torsional etc.), and the application of the proposed technique to fatigue cracks. Also, it would be 
interesting to investigate if the proposed technique could be used for multiple-damage scenarios. 

In conclusion, we hope that the presented investigation will help spread out the perception that 
regression analysis can be successfully used in the field of non-destructive damage identification, [6]. 
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