

FUTHER CONSIDERATION ON THE FORMAL VERIFICATION
OF NUMBER THERETICAL ALGORITHMS

Laura KOVACS1, Adalbert KOVACS2

1 École Polytechnique Fédérale de Lausanne, SWITZERLAND

2 University “Politehnica” Timisoara, ROMANIA

Abstract
We discuss experimental results of an automatic approach for inferring polynomial loop invariants of
P-solvable loops implementing interesting number- theoretic algorithms. The method relies on
techniques from symbolic summation and polynomial algebra, and is implemented in the software
package Aligator written in Mathematica.
Keywords:
program verification, invariant generation, symbolic summation, Groebner basis.

1. INTRODUCTION

To verify and/or analyze programs containing loops one needs to discover some properties of

loops automatically. Such properties are known as loop invariants. Powerful techniques for finding
loop invariants are thus crucial for further progress of software verification and program analysis.

Research into methods for automatically generating loop invariants has a long history, starting
with the works of [18, 5]. However, due to the limited arithmetic operations among program variables,
the problem of invariant inference has recently become a challenging research topic [12, 16, 4, 14, 15,
9].

In [9,11] we introduced an automatic approach for polynomial invariant generation, that,
contrarily to [12, 16, 4] does not use a priori fixed invariant templates, and it is applicable to the a
richer class of loops than the one introduced in [15]. These invariants are of the form

 where are polynomials over the program variables. In the sequel we

will call a polynomial equality any equality of the form

,001 =∧∧= rpp K rpp ,,1 K

,0=p where is a polynomial. Thus an

invariant is polynomial if it is a conjunction of polynomial equalities.
p

The loops for which our method automatically infers polynomial invariants are characterized by
the following conditions: (i) they contain only assignments to variables and conditional statements; (ii)
tests conditions are omitted; (iii) the variables in assignments range over numeric types, such as
integers or rationals; (iv) the variables can be expressed as a polynomial of the initial values of
variables (those when the loop is entered), the loop counter, and some new variables, where there are
algebraic dependencies among the new variables. We call such loops P-solvable. There are many
natural examples of P-solvable loops in real-life programs.

Our method for invariant generation first translates conditional statements within the loop into
a sequence of loops, called inner loops. Then all loop conditions are ignored, turning the loop into a
non-deterministic program. Next symbolic summation methods are applied to the inner loops to
determine if the output values of their variables can be expressed using symbolic expressions in their
input values and inner loop counters. If yes, a collection of potential polynomial invariants is
generated using a Groebner basis algorithm to eliminate loop counters. The invariant property of these
polynomials are then checked using the weakest precondition strategy, and valid polynomial invariants
of P-solvable loops are thus derived. Moreover, we proved that under some conditions the method
computes all polynomial invariants, i.e. it computes a Groebner basis of the ideal of polynomial
invariants. However, we could not find any example of a P-solvable loop for which our approach fails
to be complete. We thus conjecture that the imposed completeness conditions cover a large class of
imperative programs, and the completeness proof of our approach without the additional assumptions
is a challenging task for further research.

Exploiting the symbolic manipulation capabilities of the computer algebra system Mathematica,
our approach is implemented in a new software package called Aligator [9]. Using Aligator, a complete

Tome VII (year 2009), Fascicule 3, (ISSN 1584 – 2673) 214

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL
OF ENGINEERING. TOME VII (year 2009). Fascicule 3 (ISSN 1584 – 2673)

set of polynomial invariants is successfully generated for numerous imperative programs working on
numbers.

The purpose of this paper is to illustrate our approach on examples implementing interesting
algorithms working on numbers. Finding invariants for such loops may be a very hard and creative
work since non-trivial mathematical knowledge and intuition may be required. The ultimate goal of
this paper is to emphasize the value of applying algebraic techniques for computer aided verification.
We hope that the experimental results will provide practical justification for the relevance of our
method. For technical details and correctness of the approach we refer to [9, 11].

2. P-SOLVABLE LOOPS AND INVARIANTS

In this section we first briefly recall fundamental facts from polynomial algebra and recurrence

solving. Then our algorithm for P-solvable loops will be presented.

We assume that is a field of characteristic zero (e.g. field of rationals, reals, etc.), and by Κ Κ

we denote its algebraic closure. Throughout this paper, { }mxxX ,,1 K= denotes the set of

loop variables with initial values and

)1(>m
,0X][XΚ is the ring of polynomials in the variables X with

coefficients from .Κ
Polynomial Ideals and Invariants. As observed in [13], the set of polynomials such that

 is a polynomial invariant forms a polynomial ideal, called polynomial invariant ideal. The
challenging part in polynomial invariant inference is thus to systematically compute a basis of this

ideal. For doing so we rely on [1], and try to algorithmically compute a Groebner basis { }

 of the polynomial invariant ideal. The conjunction of the polynomial equations

corresponding to the polynomials from such a computed basis (i.e.) would thus

completely characterize the polynomial invariants of the loop. Namely, any other polynomial invariant

could be derived as a logical consequence of

p
0=p

rpp ,,1 K

])[(Xpi Κ∈
0)(=Xpi

.001 =∧∧= rpp K
In the process of deriving such a finite basis of the polynomial invariant ideal, we leverage

methods from algorithmic combinatorics, as presented below.
Recurrences and Closed Forms. From the assignments statements of a P-solvable loop,

recurrence equations of the variables are built and solved, using the loop counter as the
recurrence index. Solutions of recurrence equations are called closed-forms, and they express the
value of each program variable in a loop iteration as a function of and some given initial values.

n (Ν∈n)

n
In our research, we handle special classes of recurrence equations, i.e. those that are either C-

finite [19] or Gosper-summable [3]. C-finite recurrences always admit closed forms [2], whereas closed
forms of Gosper-summable recurrences can be computed, if they exist, using the decision algorithm
given by [3]. For example, the closed form solution of the C-finite recurrence 1][2]1[+∗=+ nxnx

(corresponding to the loop assignment 12: +∗= xx) is where

denotes the value of variable

,12]0[2][−+∗= nn xnx][nx
x at loop iteration n and thus is the initial value of]0[x x (i.e. before

entering the loop); whereas the closed form the Gosper-summable recurrence 2][]1[+=+ nyny

(corresponding to the loop assignment 2: += yy) is ,2]0[][nyny ∗+= where denotes the

value of variable at loop iteration and is the initial value of

][ny
y n]0[y .y

We only consider P-solvable loops whose assignment statements describe Gosper-summable or
C-finite recurrences. Moreover, P-solvability of loops requires the existence of polynomial closed form
solutions of each variable, i.e. closed forms are polynomial expressions in loop counter, initial values
and some new variables, where there are polynomial relations, so-called algebraic dependencies,
among the new variables. Computing the algebraic dependencies reduces once again to compute a
Groebner basis of the ideal of all algebraic dependencies [7]. For example, the ideal of algebraic

dependencies among and is generated by the polynomial relation note

that this relation holds for any

na 2= nb 4= ;02 =− ba
.Ν∈n

P-solvable Loops and Invariants. We consider P-solvable loops as below.

[][] ()1;][;, 1111100 +−− kkkk ssElsesThenbIfElsesThenbIfsbWhile KK

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 215

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL
OF ENGINEERING. TOME VII (year 2009). Fascicule 3 (ISSN 1584 – 2673)

where are boolean expressions, and are sequences of assignments As

mentioned, in our approach to invariant generation all tests are omitted, and the loops are turned into
non-deterministic programs [11]. Using regular expression like notation, loop (1) can be thus
equivalently written as

10 ,, −kbb K 10 ,, +kss K).1(≥k

() ,21
∗

kSSS K where 10 ;; += kii sssS for all .,,1 ki K= ()2

Loop (1) is P-solvable iff the inner loops from (2) are P-solvable. Namely, the variables of

each can be expressed as a polynomial of the initial values of variables (those when the loop is

entered), the inner loop counter, and some new variables, where there are algebraic dependencies

among the new variables. We write to mean the -times repeated execution of where

∗
iS

∗
iS

ij
iS ij ,iS Ν∈ij

denotes the loop counter of .iS
We have now all necessary ingredients to synthesize our invariant generation algorithm for P-

solvable loops with assignments and (nested) conditionals. This is achieved in Algorithm 2.1, as given
below.

Algorithm 2.1. P-solvable Loops with Nested Conditionals
Input: P-solvable loop (1) with conditional branches and assignments k
Output: Set of polynomial invariants for (1) among GI X with initial values 0X
Assumption: ,1≥k ,Ν∈ij ki ,,1K=

1 Transform loop (1) into loop (2) with P-solvable inner loops k ∗∗
kSS ,,1 K

2 for each kiS ij
i ,,1, K= do

3 Compute the closed form system of the P-solvable loop : ij
iS

⎪
⎪
⎩

⎪
⎪
⎨

⎧

==

Κ∈
Κ∈

=

=

mlsr
Xq

yyjq
y

yyjqjx

yyjqjx

li

isiili

ir

isiimiim

isiiii

,,1,,,1
by edparametriz are

],,,,[
,

 where,
),,,(][

),,,(][

0,

1,

1,

11,1

KK

K

K

M

K

4 Compute the ideal of algebraic dependencies for the new variables

from the closed form of

(isiii yyjIA ,,, 1 K=) isy
ij

iS
5 endfor

6 Compute the merged closed form of :;;1
1

kj
k

j SS K

()

()
 with,

,,,,,,,,],,[

,,,,,,,,],,[

111111

11111111

⎪
⎩

⎪
⎨

⎧

=

=

kskksmkm

kskksk

yyjyyjfjjx

yyjyyjfjjx

KKKKK

M

KKKKK

],,,,,,,,,[11111 kskksl yyjyyjf KKKKΚ∈

the coefficients of are given by the initial values before lf 0X kj
k

j SS ;;1
1 K

7 Let ∑
=

=
k

i
iAA

1

8 Compute ()I KK],,[,, 1111 mmm xxAfxfxPI Κ+−−=

9 for each permutation () ()kww k ,,1,,1 KK ≠ over { }k,,1K do

10 Compute the merged closed form of :;;1

1

kw

k

w j
w

j
w SS K

()

()
 with,

,,,,,,,,],,[

,,,,,,,,],,[

111

11111

111

111

⎪
⎩

⎪
⎨

⎧

=

=

swwwswwwmkm

swwwswwwk

kkk

kkk

yyjyyjfjjx

yyjyyjfjjx

KKKKK

M

KKKKK

216 © copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL
OF ENGINEERING. TOME VII (year 2009). Fascicule 3 (ISSN 1584 – 2673)

],,,,,,,,,[11111 kskksl yyjyyjf KKKKΚ∈

the coefficients of are given by the initial values before lf 0X kw

k

w j
w

j
w SS ;;1

1
K

11 Let ∑
=

=
k

i
wi

AA
1

12 Compute ()I KK],,[,, 111 mmm xxAfxfxG Κ+−−=

13 Compute I GPIPI 11 =
14 endfor

15 From PI keep the set of those polynomials whose comjunction is preserved by each

1 GI

:,,1 kSS K

{ } where,,,1,)0)(,(11 PIkiGIXpSwpPIpGI i ⊆=∈=∈= K

)0)(,(=XpSwp i is the weakest precondition of with postcondition iS 0)(=Xp
16 return GI .

Algorithm 2.1 receives as input a P-solvable loop (1), and transforms it into (2) as its first step.

Next, closed forms and algebraic dependencies of each inner loop are computed using the

methods presented on page 2 (steps 2-5 of Algorithm 2.1). Further, inner loops are taken in all possible
 permutation orders. For each permutation order, closed forms of inner loops are “merged” to

express the behavior of a sequence of inner loops as a polynomial system in the inner loop counters,

initial values and some new variables where there are algebraic dependencies among the new

variables. Loop counters are next eliminated by Groebner basis computation, and the ideal of valid
polynomial identities after arbitrary inner loop sequences is thus derived (steps 6-12 of Algorithm 2.1).
Further, the intersection of the polynomial ideals of all inner loop sequences is computed (step 13 of

Algorithm 2.1) and the ideal of polynomial relations for the first iteration of loop (2) with initial

values is obtained. Finally, using the weakest precondition strategy, the inductiveness property of

polynomials from is checked, and a set GI of polynomial invariants for (1) is derived (steps 15-16
of Algorithm 2.1).

ij
iS

!k

0X

1PI

0X

1PI

Note that steps 9-16 are relevant only for P-solvable loops with nested conditionals (i.e.).
For loops with assignment statements only, polynomial invariants are computed from the closed form
system of the loop by eliminating the variables in the loop counter, using Groebner basis computation.
Moreover, based on the theory of Groebner bases, the computed set of polynomials is a basis of the
polynomial invariant ideal. Hence, our approach for invariant generation in case of P-solvable loops
with assignments only is always complete: any further polynomial invariant can be inferred from the
computed basis.

1>k

Moreover, under additional assumptions on the ideal of polynomial relations among X with

initial values corresponding to sequences of and 0X k 1+k inner loops, in [11] we proved that our

method is also complete for a wide class of P-solvable loop with nested conditionals. Namely, it returns
a basis for the polynomial invariant ideal for some special cases of P-solvable loops with conditional
branches and assignments. It is worth to be mentioned though that these additional constraints cover
a wide class of loops, and we could not find any example for which the completeness of our approach is
violated.

3. EXPERIMENTAL RESULTS

We now turn our interest on the practical applicability of our method for invariant generation,

and illustrate the technique on interesting examples implementing non-trivial number-theoretic
algorithms.

Our approach is implemented in a new software package, called Aligator [10], written on top of
the computer algebra system Mathematica. The package combines algorithms from symbolic
summation and polynomial algebra with computational logic in a uniform framework, and is
applicable to the rich class of P-solvable loops.

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 217

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL
OF ENGINEERING. TOME VII (year 2009). Fascicule 3 (ISSN 1584 – 2673)

We begin with a loop without conditionals, and illustrate that Algorithm 2.1 is applicable for the
special case when (i.e. loop with only assignments). 1=k
Example 3.1 [8] Consider the loop implementing an algorithm for computing the integer square root

 of a given integer number k .a

[].:;2:;1:,
;1:;1:;0:

jmmjjkkamWhile
mjk

+=+=+=≤
===

By applying Algorithm 2.1, the polynomial invariants are derived as follows.
Step 1: Omitting test conditions.

.:;2:;1::1 jmmjjkkS +=+=+=
Steps 2-5: Closed form computation.

set)empty the(i.e. {}with counter loop theis where

)1(]0[]0[][
2]0[][

]0[][

]1[][]1[
2][]1[
1][]1[

:solvingRecurrence:srecurrenceofSystem

=Ν∈
⎪
⎪
⎩

⎪⎪
⎨

⎧

++∗+=

+=

+=

⎪
⎩

⎪
⎨

⎧

++=+
+=+
+=+

An

nnnjmnm
njnj
nknk

njnmnm
njnj
nknk

Gosper

Gosper

Gosper

]0[],0[],0[mjk denote respectively the initial values of .,, mjk
Steps 6-8: Variable elimination.

]0[2]0[2],0[4]0[]0[242
],,[)1(]0[]0[,2]0[,]0[

22
1

kjkjmjjmjj
mjkAnnnjmmnjjnkkPI

−++−+−−−+=
Ζ++−∗−−−−−−= I

Steps 9-16: Polynomial invariant ideal.

{ } GIPIkjkjmjjmjjGI =−++−+−−−+= 1
22 and]0[2]0[2],0[4]0[]0[242

In [11] we proved that affine loops are P-solvable. Note that Example 3.1 is affine, and thus P-
solvable. Hence, the correctness of Algorithm 2.1 ensures that the returned set GI of invariants is a
basis for the polynomial invariant ideal, and our method is complete: any further polynomial invariant
can be derived from The automatically inferred invariant for Example 3.1 is thus .GI

,0]0[2]0[20]0[4]0[]0[242 22 =−++−∧=+−−−+ kjkjmjjmjj

yielding by initial values substitutions. ,0210421 2 =+−∧=−++ kjmjj
Many interesting algorithms implementing special numbers from algebraic combinatorics can

be encoded using P-solvable loops, as also illustrated in the next example.
Example 3.2 [17, 6] Consider the loop computing the number of HC-polyominoes for .2≥m

[]1:;4:;:;:;475:;:;:,
;2:;4/3:;16/5:;1:

+=∗===∗+∗−∗===≤
====

iiggsbtabarrrttsmiWhile
rabg

We omit a detailed presentation of the steps of Algorithm 2.1, and discuss only the main results
obtained from symbolic summation.

The loop body is described by the recurrence equations:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

++=+
+∗=+

+=+
+=+

∗++∗−+∗=+

1]2[]3[
]2[4]3[

]1[]3[
]2[]3[

][4]1[7]2[5]3[

nini
ngng

nrnb
nrna

nrnrnrnr

where is the loop counter. The recurrences of 0≥n r and are C-finite, and hence they can be

solved by the methods presented on page 2. The recurrence of i is both Gosper-summable and C-
finite, and thus it admits closed form solution which is computed in our approach by the Gosper-
algorithm [3]. The closed forms of

g

r and yield algebraic exponential sequences in whose ideal
of algebraic dependencies is derived as discussed on page 3. Further, by Groebner basis computation,

g ,n

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 218

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL
OF ENGINEERING. TOME VII (year 2009). Fascicule 3 (ISSN 1584 – 2673)

the variables in are eliminated from the closed form system of the loop. Finally, after initial value
substitution, the polynomial invariant ideal is generated by the polynomial relation:

n

.0161121603207525122568961104496 322223223 =++−+−+−+−+ rbrarrbrbaragbbabaa

Finally, let us give an example of a P-solvable loop with nested conditionals.
Example 3.3 [20] Consider the imperative loop implementing an algorithm for computing the
square root with precision q err for a real number .a

[
[

]]2/:;2:
2/:;:;22:

,022
,2

;2/1:;1:;1:

pprrElse
pppqqpqrrThen

pqrIf
errrpWhile

pqar

=∗=
=+=−∗−∗=

≥∗∗−∗
≥∗∗

==−=

Step 1: Omitting test conditions and loop transformation.

2/:;2::
2/:;:;22::

2

1

pprrS
pppqqpqrrS

=∗=
=+=−∗−∗=

Steps 2-5: Closed form computation of inner loops.
System of recurrences:

⎪
⎩

⎪
⎨

⎧

∗=+
=+
=+

⎪
⎩

⎪
⎨

⎧

−∗−∗=+
+=+

=+
Ν∈Ν∈

][2]1[
][]1[

2/][]1[

][][2][2]1[
][][]1[

2/][]1[

: loopInner : loopInner

22

22

22

1111

111

11

21

2
21

1

jrjr
jqjq
jpjp

jpjqjrjr
jpjqjq

jpjp
jj

SS jj

where and represent the loop counters of the inner loops. 1j 2j
Recurrence solving:

()
⎪
⎪
⎩

⎪
⎪
⎨

⎧

∗=

=

∗=

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∗+∗+∗

−−∗−∗=

∗−∗+=

∗=

Ν∈Ν∈

−

−

−

−

−

−

]0[2][

]0[][

]0[
2
1][

]0[4]0[2]0[
2

1

]0[*2]0[2]0[2][

]0[
2

1]0[2]0[][

]0[
2
1][

: loopInner : loopInner

2

2

2

22

1111

111

1

1111

11

21

1

2

2

2

1

1

11

1

21

2

j
j

finiteC

j

jjfiniteC

jjjj

jjj
j

finiteC

jjjjGosper

jjfiniteC

jj

rjr

qjq

pjp

pqp

pqrjr

ppqjq

pjp

jj
SS

where are the initial values of]0[],0[],0[
111 jjj rqp rqp ,, before entering the inner loop

Similarly, are the initial values of

.1
1
jS

]0[],0[],0[
222 jjj rqp rqp ,, before entering the inner loop .2

2
jS

Introducing new variables and computing algebraic dependencies:

()

11*

]0[][
]0[][

]0[][

]0[4]0[2]0[2

]0[*2]0[2]0[][
]0[*2]0[2]0[][

]0[][
2,22,2

: loopInner : loopInner

21

2

2

2

1

1

1

21

2

2

2

111

111

111

1

2211

2

2

1

1

−∗=−=

⎪
⎩

⎪
⎨

⎧

∗=
=

∗=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∗+∗+∗∗

−−∗−∗=
∗−∗+=

∗=
====

Ν∈Ν∈
−−

vuAyxA

rujr
qjq

pvjp

pqpy

pqrxjr
pypqjq

pyjp
vuyx

jj
SS

j

j

j

jjj

jjj

jjj

j

jjjj

jj

Steps 6-8: Polynomial relations of .; 21
21
jj SS

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 219

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL
OF ENGINEERING. TOME VII (year 2009). Fascicule 3 (ISSN 1584 – 2673)

Merging closed forms:

For the inner loop sequence the initial values of the loop variables ,; 21
21
jj SS]0[],0[],0[

222 jjj rqp

rqp ,, before entering loop are given respectively by the values after Thus,

by replacing the closed form expressions of in the closed forms

we get the closed form system for the values of loop variables

2
2
jS][],[],[111 jrjqjp .1

1
jS

][],[],[111 jrjqjp],[],[],[222 jrjqjp
],[],,[],,[212121 jjrjjqjjp rqp ,, after

-times repeated execution of followed by -times repeated execution of Writing

respectively

1j 1S 2j .2S
rqp ,, instead of , the obtained merged closed form is:],[],,[],,[212121 jjrjjqjjp

()
1,1with

]0[4]0[2]0[2])0[2]0[2]0[(*
]0[2]0[2]0[

]0[
:; of system form Closed 21

21

−∗−∗=

⎪
⎩

⎪
⎨

⎧

∗+∗+∗∗−∗−∗−∗=
∗∗−∗+=

∗∗=

yxvuA
pqpypqrxur

pypqq
pyvp

SS jj

where are respectively the initial values of the loop variables]0[],0[],0[rqp rqp ,, before the first

iteration of the P-solvable loop with nested conditionals (i.e. before). We denote: 21
21 ; jj SS

()
()

.1,1
,]0[4]0[2]0[2])0[2]0[2]0[(*

,]0[2]0[2]0[],0[1

−∗−∗
∗+∗+∗∗−∗−∗−∗−

∗∗−∗+−∗∗−=

yxvu
pqpypqrxur

pypqqpyvpI

Variable elimination:

.]0[]0[22]0[r]q,R[p, 22
11 rprpqqIPI ∗∗−∗∗+−== I

Steps 9-14: Polynomial relations of .; 12
12
jj SS

Merging closed forms:

()
1,1with

]0[4]0[2]0[2]0[2]0[2]0[
]0[2]0[2]0[

]0[
:; of system form Closed 12

12

−∗−∗=

⎪
⎩

⎪
⎨

⎧

∗∗+∗+∗∗∗−∗∗−∗−∗∗=
∗∗−∗+=

∗∗=

yxvuA
pvqpvypvqruxr

pypqq
pvyp

SS jj

where are the initial values of the loop variables]0[],0[],0[rqp rqp ,, before the first iteration of the

P-solvable loop with nested conditionals (i.e. before). We denote: 12
12 ; jj SS

()
()()

.1,1
]0[4]0[2]0[2]0[2]0[2]0[

,]0[2]0[2]0[],0[2

−∗−∗
∗∗+∗+∗∗∗−∗∗−∗−∗∗−

∗∗−∗+−∗∗−=

yxvu
pvqpvypvqruxr

pypqqpyvpI

Variable elimination:

.]0[]0[22]0[r]q,R[p, 22
2 rprpqqIG ∗∗−∗∗+−== I

Polynomial relations of inner loop sequences:

.]0[]0[22]0[G 22
11 rprpqqPIPI ∗∗−∗∗+−== I

Steps 15-16: Polynomial invariants of P-solvable loop with conditionals.

{ },]0[]0[22]0[22 rprpqqGI ∗∗−∗∗+−=

and thus GIPI =1 . The derived set GI is hence a basis of the polynomial invariant ideal, and our

method is complete: any further polynomial invariant can be derived from Finally, by substituting
the concrete values for the symbolically treated initial values , the automatically

inferred polynomial invariant for Example 3.3 is thus:

.GI
]0[],0[],0[rqp

.02 2 =−∗∗− qrpa

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 220

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL
OF ENGINEERING. TOME VII (year 2009). Fascicule 3 (ISSN 1584 – 2673)

4. CONCLUSIONS

An automatic approach for polynomial invariant generation for P-solvable loops was discussed,

and illustrated on a number of examples implementing non-trivial number-theoretic algorithms. For
all examples we could find, and thus in particular for the examples discussed in the paper, a basis for
the polynomial invariant ideal was derived by using recurrence solving, polynomial algebra and
computational logic. The successful application of our approach underlines the value of using algebraic
techniques for computer aided verification.

REFERENCES/BIBLIOGRAPHY
[1] B. Buchberger. An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero

Dimensional Polynomial Ideal. J. of Symbolic Computation, 41(3-4):475–511, 2006.
[2] G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward. Recurrence Sequences, volume 104 of

Mathematical Surveys and Monographs. American Mathematical Society, 2003.
[3] R. W. Gosper. Decision Procedures for Indefinite Hypergeometric Summation. J. of Symbolic

Computation, 75:40–42, 1978.
[4] D. Kapur. A Quantifier Elimination based Heuristic for Automatically Generating Inductive Assertions for

Programs. J. of Systems Science and Complexity, 19(3):307–330, 2006.
[5] M. Karr. Affine Relationships Amomg Variables of Programs. Acta Informatica, 6:133–151, 1976.
[6] M. Kauers. Algorithms for Nonlinear Higher Order Difference Equations. PhD thesis, RISC-Linz, Johannes

Kepler University Linz, Austria, 2005.
[7] M. Kauers and B. Zimmermann. Computing the Algebraic Relations of C-finite Sequences and

Multisequences. Technical Report 2006-24, SFB F013, 2006.
[8] D. E. Knuth. The Art of Computer Programming, volume 2. Seminumerical Algorithms. Addison-Wesley,

3rd edition, 1998.
[9] L. Kovács. Automated Invariant Generation by Algebraic Techniques for Imperative Program Verification

in Theorema. PhD thesis, RISC, Johannes Kepler University Linz, 2007.
[10] L. Kovács. Aligator: A Mathematica Package for Invariant Generation. In Proc. of IJCAR, volume 5195 of

LNCS, pages 275-282, Sydney, Australia, 2008.
[11] L. Kovács. Reasoning Algebraically About P-Solvable Loops. In Proc. of TACAS, volume 4963 of LNCS,

pages 249–264, Budapest, Hungary, 2008.
[12] M. Müller-Olm and H. Seidl. Computing Polynomial Program Invariants. Indormation Processing Letters,

91(5):233–244, 2004.
[13] E. Rodriguez-Carbonell and D. Kapur. Automatic Generation of Polynomial Loop Invariants: Algebraic

Foundations. In Proc. of ISSAC 04, 2004.
[14] E. Rodriguez-Carbonell and D. Kapur. Automatic Generation of Polynomial Invariants of Bounded Degree

using Abstract Interpretation. Science of Computer Programming, 64(1), 2007.
[15] [E. Rodriguez-Carbonell and D. Kapur. Generating All Polynomial Invariants in Simple Loops. J. of

Symbolic Computation, 42(4):443–476, 2007.
[16] S. Sankaranaryanan, H. B. Sipma, and Z. Manna. Non-Linear Loop Invariant Generation using Gr¨obner

Bases. In Proc. of POPL 2004, 2004.
[17] R. P. Stanley. Enumerative Combinatorics, volume 2 of Cambridge Studies in Advanced Mathematics 62.

Cambridge University Press, 1997.
[18] B.Wegbreit. The Synthesis of Loop Predicates. Communication of the ACM, 2(17):102–112, 1974.
[19] D. Zeilberger. A Holonomic System Approach to Special Functions. Journal of Computational and Applied

Mathematics, 32:321–368, 1990.
[20] K. Zuse. The Computer - My Life. Springer, 1993

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 221

