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Abstract  
We discuss experimental results of an automatic approach for inferring polynomial loop invariants of 
P-solvable loops implementing interesting number- theoretic algorithms. The method relies on 
techniques from symbolic summation and polynomial algebra, and is implemented in the software 
package Aligator written in Mathematica. 
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1. INTRODUCTION 
 
To verify and/or analyze programs containing loops one needs to discover some properties of 

loops automatically. Such properties are known as loop invariants. Powerful techniques for finding 
loop invariants are thus crucial for further progress of software verification and program analysis. 

Research into methods for automatically generating loop invariants has a long history, starting 
with the works of [18, 5]. However, due to the limited arithmetic operations among program variables, 
the problem of invariant inference has recently become a  challenging research topic [12, 16, 4, 14, 15, 
9]. 

In [9,11] we introduced an automatic approach for polynomial invariant generation, that, 
contrarily to [12, 16, 4] does not use a priori fixed invariant templates, and it is applicable to the a 
richer class of loops than the one introduced  in [15]. These invariants are of the form 

 where  are polynomials over the program variables. In the sequel we 

will call a polynomial equality any equality of the form 

,001 =∧∧= rpp K rpp ,,1 K

,0=p  where  is a polynomial. Thus an 

invariant is polynomial if it is a conjunction of polynomial equalities. 
p

The loops for which our method automatically infers polynomial invariants are characterized by 
the following conditions: (i) they contain only assignments to variables and conditional statements; (ii) 
tests conditions are omitted; (iii) the variables in assignments range over numeric types, such as 
integers or rationals; (iv) the variables can be expressed as a polynomial of the initial values of 
variables (those when the loop is entered), the loop counter, and some new variables, where there are 
algebraic dependencies among the new variables. We call such loops P-solvable. There are many 
natural examples of P-solvable loops in real-life programs. 

Our method for invariant generation first translates conditional statements within the loop into 
a sequence of loops, called inner loops. Then all loop conditions are ignored, turning the loop into a 
non-deterministic program. Next symbolic summation methods are applied to the inner loops to 
determine if the output values of their variables can be expressed using symbolic expressions in their 
input values and inner loop counters. If yes, a collection of potential polynomial invariants is 
generated using a Groebner basis algorithm to eliminate loop counters. The invariant property of these 
polynomials are then checked using the weakest precondition strategy, and valid polynomial invariants 
of P-solvable loops are thus derived. Moreover, we proved that under some conditions the method 
computes all polynomial invariants, i.e. it computes a Groebner basis of the ideal of polynomial 
invariants. However, we could not find any example of a P-solvable loop for which our approach fails 
to be complete. We thus conjecture that the imposed completeness conditions cover a large class of 
imperative programs, and the completeness proof of our approach without the additional assumptions 
is a challenging task for further research.  

Exploiting the symbolic manipulation capabilities of the computer algebra system Mathematica, 
our approach is implemented in a new software package called Aligator [9]. Using Aligator, a complete 
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set of polynomial invariants is successfully generated for numerous imperative programs working on 
numbers. 

The purpose of this paper is to illustrate our approach on examples implementing interesting 
algorithms working on numbers. Finding invariants for such loops may be a very hard and creative 
work since non-trivial mathematical knowledge and intuition may be required. The ultimate goal of 
this paper is to emphasize the value of applying algebraic techniques for computer aided verification. 
We hope that the experimental results will provide practical justification for the relevance of our 
method. For technical details and correctness of the approach we refer to [9, 11].  
 

2. P-SOLVABLE LOOPS AND INVARIANTS 
 
In this section we first briefly recall fundamental facts from polynomial algebra and recurrence 

solving. Then our algorithm for P-solvable loops will be presented. 

We assume that  is a field of characteristic zero (e.g. field of rationals, reals, etc.), and by Κ Κ  

we denote its algebraic closure. Throughout this paper, { }mxxX ,,1 K=   denotes the set of 

loop variables with initial values  and 

)1( >m
,0X ][XΚ  is the ring of polynomials in the variables X with 

coefficients from  .Κ
Polynomial Ideals and Invariants. As observed in [13], the set of polynomials  such that 

 is a polynomial invariant forms a polynomial ideal, called polynomial invariant ideal. The 
challenging part in polynomial invariant inference is thus to systematically compute a basis of this 

ideal. For doing so we rely on [1], and try to algorithmically compute a Groebner basis { } 

 of the polynomial invariant ideal. The conjunction of the polynomial equations 

corresponding to the polynomials from such a computed basis (i.e. ) would thus 

completely characterize the polynomial invariants of the loop. Namely, any other polynomial invariant 

could be derived as a logical consequence of 

p
0=p

rpp ,,1 K

])[( Xpi Κ∈
0)( =Xpi

.001 =∧∧= rpp K  
In the process of deriving such a finite basis of the polynomial invariant ideal, we leverage 

methods from algorithmic combinatorics, as presented below. 
Recurrences and Closed Forms. From the assignments statements of a P-solvable loop, 

recurrence equations of the variables are built and solved, using the loop counter   as the 
recurrence index. Solutions of recurrence equations  are called closed-forms, and they express the 
value of each program variable in a loop iteration as a function of  and some given initial values. 

n ( Ν∈n )

n
In our research, we handle special classes of recurrence equations, i.e. those that are either C-

finite [19] or Gosper-summable [3]. C-finite recurrences always admit closed forms [2], whereas closed 
forms of Gosper-summable recurrences can be computed,  if they exist, using the decision algorithm 
given by [3]. For example, the closed form solution of the C-finite recurrence 1][2]1[ +∗=+ nxnx  

(corresponding to the loop assignment 12: +∗= xx ) is  where  

denotes the value of variable 

,12]0[2][ −+∗= nn xnx ][nx
x  at loop iteration n  and thus  is the initial value of ]0[x x  (i.e. before 

entering the loop); whereas the closed form the Gosper-summable recurrence 2][]1[ +=+ nyny  

(corresponding to the loop assignment 2: += yy ) is ,2]0[][ nyny ∗+=  where  denotes the 

value of variable  at loop iteration  and  is the initial value of  

][ny
y n ]0[y .y

We only consider P-solvable loops whose assignment statements describe Gosper-summable or 
C-finite recurrences. Moreover, P-solvability of loops requires the existence of polynomial closed form 
solutions of each variable, i.e. closed forms are polynomial expressions in loop counter, initial values 
and some new variables, where there are polynomial relations, so-called algebraic dependencies, 
among  the new variables. Computing the algebraic dependencies reduces once again to compute a 
Groebner basis of the ideal of all algebraic dependencies [7]. For example, the ideal of algebraic 

dependencies among  and  is generated by the polynomial relation  note 

that this relation holds for  any  

na 2= nb 4= ;02 =− ba
.Ν∈n

P-solvable Loops and Invariants. We consider P-solvable loops as below. 
 

[ ][ ] ( )1;][;, 1111100 +−− kkkk ssElsesThenbIfElsesThenbIfsbWhile KK  
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where  are boolean expressions, and  are sequences of assignments  As 

mentioned, in our approach to invariant generation all tests are omitted, and the loops are turned into 
non-deterministic programs [11]. Using regular expression like notation, loop (1) can be thus 
equivalently written as 

10 ,, −kbb K 10 ,, +kss K ).1( ≥k

 

( ) ,21
∗

kSSS K  where 10 ;; += kii sssS  for all .,,1 ki K=    ( )2
 

Loop (1) is P-solvable iff the inner loops  from (2) are P-solvable. Namely, the variables of 

each  can be expressed as a polynomial of the initial values of variables (those when the loop is 

entered), the inner loop counter, and some new variables, where there are algebraic dependencies 

among the new variables. We write  to mean the -times repeated execution of  where 

∗
iS

∗
iS

ij
iS ij ,iS Ν∈ij  

denotes the loop counter of  .iS
We have now all necessary ingredients to synthesize our invariant generation algorithm for P-

solvable loops with assignments and (nested) conditionals. This is achieved in Algorithm 2.1, as given 
below. 

Algorithm 2.1. P-solvable Loops with Nested Conditionals 
Input: P-solvable loop (1) with  conditional branches and assignments k
Output: Set  of polynomial invariants for (1) among GI X  with initial values  0X
Assumption: ,1≥k ,Ν∈ij   ki ,,1K=

1 Transform loop (1) into loop (2) with  P-solvable inner loops  k ∗∗
kSS ,,1 K

2 for each  kiS ij
i ,,1, K= do 

3 Compute the closed form system of the P-solvable loop : ij
iS

   

⎪
⎪
⎩

⎪
⎪
⎨

⎧

==

Κ∈
Κ∈

=

=

mlsr
Xq

yyjq
y

yyjqjx

yyjqjx

li

isiili

ir

isiimiim

isiiii

,,1,,,1
by   edparametriz are  

],,,,[
,

     where,
),,,(][

),,,(][

0,

1,

1,

11,1

KK

K

K

M

K
 

4 Compute the ideal  of algebraic dependencies for the new variables  

from the closed form of  

( isiii yyjIA ,,, 1 K= ) isy
ij

iS
5 endfor 

6 Compute the merged closed form of  :;;1
1

kj
k

j SS K

( )

( )
      with,

,,,,,,,,],,[

,,,,,,,,],,[

111111

11111111

⎪
⎩

⎪
⎨

⎧

=

=

kskksmkm

kskksk

yyjyyjfjjx

yyjyyjfjjx

KKKKK

M

KKKKK
 

],,,,,,,,,[ 11111 kskksl yyjyyjf KKKKΚ∈  

the coefficients of  are given by the initial values  before  lf 0X kj
k

j SS ;;1
1 K

7 Let  ∑
=

=
k

i
iAA

1

8 Compute ( )I KK ],,[,, 1111 mmm xxAfxfxPI Κ+−−=  

9 for each permutation ( ) ( )kww k ,,1,,1 KK ≠  over { }k,,1K  do 

10 Compute the merged closed form of  :;;1

1

kw

k

w j
w

j
w SS K

( )

( )
      with,

,,,,,,,,],,[

,,,,,,,,],,[

111

11111

111

111

⎪
⎩

⎪
⎨

⎧

=

=

swwwswwwmkm

swwwswwwk

kkk

kkk

yyjyyjfjjx

yyjyyjfjjx

KKKKK

M

KKKKK
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],,,,,,,,,[ 11111 kskksl yyjyyjf KKKKΚ∈  

the coefficients of  are given by the initial values  before  lf 0X kw

k

w j
w

j
w SS ;;1

1
K

11 Let  ∑
=

=
k

i
wi

AA
1

12 Compute ( )I KK ],,[,, 111 mmm xxAfxfxG Κ+−−=  

13 Compute  I GPIPI 11 =
14 endfor 

15 From PI  keep the set  of those polynomials whose comjunction is preserved by each 

 
1 GI

:,,1 kSS K

{ } where,,,1,)0)(,( 11 PIkiGIXpSwpPIpGI i ⊆=∈=∈= K  

)0)(,( =XpSwp i  is the weakest precondition of  with postcondition  iS 0)( =Xp
16 return GI  .

Algorithm 2.1 receives as input a P-solvable loop (1), and transforms it into (2) as its first step. 

Next, closed forms and algebraic dependencies of each inner loop  are computed using the 

methods presented on page 2 (steps 2-5 of Algorithm 2.1). Further, inner loops are taken in all possible 
 permutation orders. For each permutation order, closed forms of inner loops are “merged” to 

express the behavior of a sequence of inner loops as a polynomial system in the inner loop counters, 

initial values  and some new variables where there are algebraic dependencies among the new 

variables. Loop counters are next eliminated by Groebner basis computation, and the ideal of valid 
polynomial identities after arbitrary inner loop sequences is thus derived (steps 6-12 of Algorithm 2.1). 
Further, the intersection of the polynomial ideals of all inner loop sequences is computed (step 13 of 

Algorithm 2.1) and the ideal  of polynomial relations for the first iteration of loop (2) with initial 

values  is obtained. Finally, using the weakest precondition strategy, the inductiveness property of 

polynomials from  is checked, and a set GI  of polynomial invariants for (1) is derived (steps 15-16 
of Algorithm 2.1). 

ij
iS

!k

0X

1PI

0X

1PI

Note that steps 9-16 are relevant only for P-solvable loops with nested conditionals (i.e. ). 
For loops with assignment statements only, polynomial invariants are computed from the closed form 
system of the loop by eliminating the variables in the loop counter, using Groebner basis computation. 
Moreover, based on the theory of Groebner bases, the computed set of polynomials is a basis of the 
polynomial invariant ideal. Hence, our approach for invariant generation in case of P-solvable loops 
with assignments only is always complete: any further polynomial invariant can be inferred from the 
computed basis. 

1>k

Moreover, under additional assumptions on the ideal of polynomial relations among X  with 

initial values  corresponding to sequences of  and 0X k 1+k  inner loops, in [11] we proved that our 

method is also complete for a wide class of P-solvable loop with nested conditionals. Namely, it returns 
a basis for the polynomial invariant ideal for some special cases of P-solvable loops with conditional 
branches and assignments. It is worth to be mentioned though that these additional constraints cover 
a wide class of loops, and we could not find any example for which the completeness of our approach is 
violated. 

 
3. EXPERIMENTAL RESULTS 
 
We now turn our interest on the practical applicability of our method for invariant generation, 

and illustrate the technique on interesting examples implementing non-trivial number-theoretic 
algorithms.  

Our approach is implemented in a new software package, called Aligator [10], written on top of 
the computer algebra system Mathematica. The package combines algorithms from symbolic 
summation and polynomial algebra with computational logic in a uniform framework, and is 
applicable to the rich class of P-solvable loops.  

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 217 



 

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL 
OF ENGINEERING. TOME VII (year 2009). Fascicule 3 (ISSN 1584 – 2673) 

 
 

We begin with a loop without conditionals, and illustrate that Algorithm 2.1 is applicable for the 
special case when  (i.e. loop with only assignments). 1=k
Example 3.1 [8] Consider the loop implementing an algorithm for computing the integer square root 

 of a given integer number  k .a

[ ].:;2:;1:,
;1:;1:;0:

jmmjjkkamWhile
mjk

+=+=+=≤
===

 

By applying Algorithm 2.1, the polynomial invariants are derived as follows. 
Step 1: Omitting test conditions. 

.:;2:;1::1 jmmjjkkS +=+=+=  
Steps 2-5: Closed form computation. 

set)empty   the(i.e. {}with counter loop  theis where

)1(]0[]0[][
2]0[][

]0[][

]1[][]1[
2][]1[
1][]1[

:solvingRecurrence:srecurrenceofSystem

=Ν∈
⎪
⎪
⎩

⎪⎪
⎨

⎧

++∗+=

+=

+=

⎪
⎩

⎪
⎨

⎧

++=+
+=+
+=+

An

nnnjmnm
njnj
nknk

njnmnm
njnj
nknk

Gosper

Gosper

Gosper

 

]0[],0[],0[ mjk  denote respectively the initial values of  .,, mjk
Steps 6-8: Variable elimination. 

]0[2]0[2],0[4]0[]0[242
],,[)1(]0[]0[,2]0[,]0[

22
1

kjkjmjjmjj
mjkAnnnjmmnjjnkkPI

−++−+−−−+=
Ζ++−∗−−−−−−= I

 

Steps 9-16: Polynomial invariant ideal. 

{ } GIPIkjkjmjjmjjGI =−++−+−−−+= 1
22 and]0[2]0[2],0[4]0[]0[242  

In [11] we proved that affine loops are P-solvable. Note that Example 3.1 is affine, and thus P-
solvable. Hence, the correctness of Algorithm 2.1 ensures that the returned set GI  of invariants is a 
basis for the polynomial invariant ideal, and our method is complete: any further polynomial invariant 
can be derived from  The automatically inferred invariant for Example 3.1 is thus .GI

,0]0[2]0[20]0[4]0[]0[242 22 =−++−∧=+−−−+ kjkjmjjmjj  

yielding  by initial values substitutions. ,0210421 2 =+−∧=−++ kjmjj
Many interesting algorithms implementing special numbers from algebraic combinatorics can 

be encoded using P-solvable loops, as also illustrated in the next example. 
Example 3.2 [17, 6] Consider the loop computing the number of HC-polyominoes for  .2≥m

[ ]1:;4:;:;:;475:;:;:,
;2:;4/3:;16/5:;1:

+=∗===∗+∗−∗===≤
====

iiggsbtabarrrttsmiWhile
rabg

 

We omit a detailed presentation of the steps of Algorithm 2.1, and discuss only the main results 
obtained from symbolic summation.  

The loop body is described by the recurrence equations: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

++=+
+∗=+

+=+
+=+

∗++∗−+∗=+

1]2[]3[
]2[4]3[

]1[]3[
]2[]3[

][4]1[7]2[5]3[

nini
ngng

nrnb
nrna

nrnrnrnr

 

where  is the loop counter. The recurrences of 0≥n r  and  are C-finite, and hence they can be 

solved by the methods presented on page 2. The recurrence of i  is both Gosper-summable and C-
finite, and thus it admits closed form solution which is computed in our approach by the Gosper-
algorithm [3]. The closed forms of 

g

r  and  yield algebraic exponential sequences in  whose ideal 
of algebraic dependencies is derived as discussed on page 3. Further, by Groebner basis computation, 

g ,n
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the variables in  are eliminated from the closed form system of the loop. Finally, after initial value 
substitution, the polynomial invariant ideal is generated by the polynomial relation: 

n

 

.0161121603207525122568961104496 322223223 =++−+−+−+−+ rbrarrbrbaragbbabaa
 

Finally, let us give an example of a P-solvable loop with nested conditionals. 
Example 3.3 [20] Consider the imperative loop implementing an algorithm for computing the 
square root  with precision q err  for a real number  .a

[
[

]]2/:;2:
2/:;:;22:

,022
,2

;2/1:;1:;1:

pprrElse
pppqqpqrrThen

pqrIf
errrpWhile

pqar

=∗=
=+=−∗−∗=

≥∗∗−∗
≥∗∗

==−=

 

Step 1: Omitting test conditions and loop transformation. 

2/:;2::
2/:;:;22::

2

1

pprrS
pppqqpqrrS

=∗=
=+=−∗−∗=

 

Steps 2-5: Closed form computation of inner loops. 
System of recurrences:  

⎪
⎩

⎪
⎨

⎧

∗=+
=+
=+

⎪
⎩

⎪
⎨

⎧

−∗−∗=+
+=+

=+
Ν∈Ν∈

][2]1[
][]1[

2/][]1[

][][2][2]1[
][][]1[

2/][]1[

: loopInner : loopInner 

22

22

22

1111

111

11

21

2
21

1

jrjr
jqjq
jpjp

jpjqjrjr
jpjqjq

jpjp
jj

SS jj

 

where  and  represent the loop counters of the inner loops. 1j 2j
Recurrence solving: 

( )
⎪
⎪
⎩

⎪
⎪
⎨

⎧

∗=

=

∗=

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∗+∗+∗

−−∗−∗=

∗−∗+=

∗=

Ν∈Ν∈

−

−

−

−

−

−

]0[2][

]0[][

]0[
2
1][

]0[4]0[2]0[
2

1

]0[*2]0[2]0[2][

]0[
2

1]0[2]0[][

]0[
2
1][

: loopInner : loopInner 

2

2

2

22

1111

111

1

1111

11

21

1

2

2

2

1

1

11

1

21

2

j
j

finiteC

j

jjfiniteC

jjjj

jjj
j

finiteC

jjjjGosper

jjfiniteC

jj

rjr

qjq

pjp

pqp

pqrjr

ppqjq

pjp

jj
SS  

where  are the initial values of ]0[],0[],0[
111 jjj rqp rqp ,,  before entering the inner loop  

Similarly,  are the initial values of 

.1
1
jS

]0[],0[],0[
222 jjj rqp rqp ,,  before entering the inner loop  .2

2
jS

Introducing new variables and computing algebraic dependencies: 

( )

11*

]0[][
]0[][

]0[][

]0[4]0[2]0[2

]0[*2]0[2]0[][
]0[*2]0[2]0[][

]0[][
2,22,2

: loopInner : loopInner 

21

2

2

2

1

1

1

21

2

2

2

111

111

111

1

2211

2

2

1

1

−∗=−=

⎪
⎩

⎪
⎨

⎧

∗=
=

∗=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∗+∗+∗∗

−−∗−∗=
∗−∗+=

∗=
====

Ν∈Ν∈
−−

vuAyxA

rujr
qjq

pvjp

pqpy

pqrxjr
pypqjq

pyjp
vuyx

jj
SS

j

j

j

jjj

jjj

jjj

j

jjjj

jj

 

Steps 6-8: Polynomial relations of  .; 21
21
jj SS
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Merging closed forms: 

For the inner loop sequence  the initial values  of the loop variables ,; 21
21
jj SS ]0[],0[],0[

222 jjj rqp

rqp ,,  before entering loop  are given respectively by the values  after  Thus, 

by replacing the closed form expressions of  in the closed forms  

we get the closed form system for the values  of loop variables 

2
2
jS ][],[],[ 111 jrjqjp .1

1
jS

][],[],[ 111 jrjqjp ],[],[],[ 222 jrjqjp
],[],,[],,[ 212121 jjrjjqjjp rqp ,,  after 

-times repeated execution of  followed by -times repeated execution of  Writing 

respectively 

1j 1S 2j .2S
rqp ,,  instead of , the obtained merged closed form is: ],[],,[],,[ 212121 jjrjjqjjp

( )
1,1with

]0[4]0[2]0[2])0[2]0[2]0[(*
]0[2]0[2]0[

]0[
:; of system form Closed 21

21

−∗−∗=

⎪
⎩

⎪
⎨

⎧

∗+∗+∗∗−∗−∗−∗=
∗∗−∗+=

∗∗=

yxvuA
pqpypqrxur

pypqq
pyvp

SS jj

 

where  are respectively the initial values of the loop variables ]0[],0[],0[ rqp rqp ,,  before the first 

iteration of the P-solvable loop with nested conditionals (i.e. before ). We denote: 21
21 ; jj SS

( )
( )

.1,1
,]0[4]0[2]0[2])0[2]0[2]0[(*

,]0[2]0[2]0[],0[1

−∗−∗
∗+∗+∗∗−∗−∗−∗−

∗∗−∗+−∗∗−=

yxvu
pqpypqrxur

pypqqpyvpI
 

Variable elimination: 

.]0[]0[22]0[r]q,R[p, 22
11 rprpqqIPI ∗∗−∗∗+−== I  

Steps 9-14: Polynomial relations of  .; 12
12
jj SS

Merging closed forms: 

( )
1,1with

]0[4]0[2]0[2]0[2]0[2]0[
]0[2]0[2]0[

]0[
:; of system form Closed 12

12

−∗−∗=

⎪
⎩

⎪
⎨

⎧

∗∗+∗+∗∗∗−∗∗−∗−∗∗=
∗∗−∗+=

∗∗=

yxvuA
pvqpvypvqruxr

pypqq
pvyp

SS jj

 

where are the initial values of the loop variables ]0[],0[],0[ rqp rqp ,,  before the first iteration of the 

P-solvable loop with nested conditionals (i.e. before ). We denote: 12
12 ; jj SS

( )
( )( )

.1,1
]0[4]0[2]0[2]0[2]0[2]0[

,]0[2]0[2]0[],0[2

−∗−∗
∗∗+∗+∗∗∗−∗∗−∗−∗∗−

∗∗−∗+−∗∗−=

yxvu
pvqpvypvqruxr

pypqqpyvpI
 

Variable elimination: 

.]0[]0[22]0[r]q,R[p, 22
2 rprpqqIG ∗∗−∗∗+−== I  

Polynomial relations of inner loop sequences: 

.]0[]0[22]0[G 22
11 rprpqqPIPI ∗∗−∗∗+−== I  

Steps 15-16: Polynomial invariants of P-solvable loop with conditionals. 

{ },]0[]0[22]0[ 22 rprpqqGI ∗∗−∗∗+−=  

and thus GIPI =1 . The derived set GI  is hence a basis of the polynomial invariant ideal, and our 

method is complete: any further polynomial invariant can be derived from  Finally, by substituting  
the concrete values for the symbolically treated initial values , the automatically 

inferred polynomial invariant for Example 3.3 is thus: 

.GI
]0[],0[],0[ rqp

.02 2 =−∗∗− qrpa  
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4. CONCLUSIONS 
 
An automatic approach for polynomial invariant generation for P-solvable loops was discussed, 

and illustrated on a number of examples implementing non-trivial number-theoretic algorithms. For 
all examples we could find, and thus in particular for the examples discussed in the paper, a basis for 
the polynomial invariant ideal was derived by using recurrence solving, polynomial algebra and 
computational logic. The successful application of our approach underlines the value of using algebraic 
techniques for computer aided verification. 
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