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Abstract 
Based on the results of [10] and [11], in this paper we present some practical aspects of the usage of the 
calculus algorithm for the study of the compressible fluid’s stationary movement through profile grids, 
on an axial–symmetric flow–surface, in variable thickness of stratum. 
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1. INTRODUCTION 
 
In this paper we present practical aspects of the usage of the calculus algorithm for the study of 

the compressible fluid’s stationary movement through profile grids, on an axial–symmetric flow–
surface, in variable thickness of stratum. More precisely, we show the applicability of the boundary 
element methods (BEM) with real values, and the possibility of solving the integral equation of the 
velocity potential by using the successive approximation method w.r.t. the parameters _ (fluid’s 
density) and h (thickness variation of fluid stratum), and using the Lagrangian interpolation formula 
through five points for the calculation of the derivatives of the velocity potential. 

The rest of the paper is organized as follows: in section 2 we state the problem and some 
theoretical considerations that are needed. In section 3 we present the calculus algorithm for the study 
of the compressible fluid’s stationary movement, together with its practical aspects.  

Section 4 concludes with some ideas for the future work. 
 

2. PRESENTING THE PROBLEM 
 
The fundamental equations (from the CVBEM method) in the problem of the compressible 

fluid’s movement on a axial-symmetric flow–surface, in variable thickness of stratum, could be ( [5], 
[6], [7]): 
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where: A – is a fixed point on the base profile L0; t – is the grid step; Г – is the circulation around L0. 
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where:  ς – is the fluid’s density, h – is a function that represents the thickness’ variation of the fluid 
stratum. 
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where: l – is the projection of L0 profile’s frame on the Oy axis. 
Our purpose is to solve the fundamental equations (1) (obtained from the CVBEM method) 

using (BEM) in real variables. For doing so, we consider the fundamental integral–equation of the 

complex potential ( ) ψ+ϕ= izF  and transform it into an integral equation with real variables, i.e. we 
build the integral equation of the velocity potential φ (s) (ψ(s) is the flow rate function). 

Theorem 2.1. [7], [11] In the subsonic motion of the compressible fluid through the profile 
grid, on an axial–symmetric flow–surface, in variable thickness of stratum, the velocity potential φ 
(s), s ∈ L0 is the solution of the integral equation (4): 
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where: 
s (x0, y0) and σ(ξ,η) are the curvilinear coordinates of the fixed point A on the L0 base profile; 
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vmx, vmy - are the components of the asymptotic mean velocity vm. 
Proposition 2.1. [10],[11] In the case of an axial-subsonic movement of a perfect and 

compressible fluid through profile grids, the flow rate function is determined from the boundary 
condition (6): 
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where: 
• ω is the angular rotation velocity of the profile grid; 
• R0 defines the origin of the axis system related to the turbine’s axis. 
Equation (4) is an integro–differential equation. In this section, we will show a possibility of 

solving this equation applying the method of successive approximation (the iteration method), using 
also the result from [8] about the order of the term containing the double integral expression: 

( ) ( ) ( ) ηξσσ=ϕ ∫∫
−
∗

ddsNqs
D

q ,
0

))      (7) 

Proposition 2.2. [10], [9] In the case of the subsonic movement of the compressible fluid 
through the profile grid on an axial–symmetric flow–surface, in variable thickness of stratum, the 

integral equation of the velocity potential  is solvable by applying the method of 

successive approximations w.r.t. the parameter 
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where: 
• γ is the adiabatic constant; 
• c0 is the sound velocity in the zero velocity point; 
• vτ and vn are, respectively, the tangential and normal velocities on L0. 
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In the first approximation it is assumed that ς = ς0 = constant and p* = p*(0) = constant. Thus, 
from (2), it results that q(0)(σ) = 0. Hence, in the integral equation (4) the double integral (7) is 
neglected and results the following Fredholme integral equation of second type, with continuous 
nucleus: 
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From solving equation (9) we obtain φI , and furthermore from (6), (8), (12)  ψI, ςI are obtained. 
Finally, using the relation: 
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a p*I and ( )σIq)  are determined. 
In the second iteration p* = p*I is assumed and for the determination of φII(s) the  following 

Fredholme integral equation of second type, with continuous nucleus, will be solved: 
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where a φI and bII(s) are previously calculated from (6) and (5), respectively. 
From solving equation (11), we obtain φII . Furthermore, from (6), (8), (12) and (10) ψII, ςII, 

and IIp∗ ( )σIIq)  are obtained, respectively. Next, the third approximation might be done by assuming 
p*=p*II, and so on. 

Proposition 2.3. [10] Having given the values of the velocity potential on each element of the 
L0 profile’s division, the tangential velocity vτ  may be calculated in each division element of the L0 
basic profile’s boundary by the formula, given by the Lagrange  interpolation method through five 
points: 
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where n denotes the number of division elements and by si we refer to the ith  element of the division 
of L0. 

To ensure the practical functionality of proposition 2.2, i.e. to indicate the solving method of the 
Fredholme integral equation of second type obtained in each approximation step (equation (6), (11) ), 
let us formulate and prove two more propositions. 

Proposition 2.4. [10], [11] In the first approximation step, solving the velocity potential’s 
Fredholme integral equation of second type is reduced to the solving of four systems of linear 
algebraic equations. 

Proof. Using the superposition rule of potential streams, we seek the solution of the Fredholme 
integral equation of second type (9) to be of the form: 
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where 41, ÷=ϕ kI
k  are the solutions of the system (14) of integral equations: 
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where:                                          ( ) ( ) ( )[ ] σ
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The integral equations (14) could be solved using the Bogoliubov-Krîlov method, conform to 
which, solving each integral equation reduces to solving a system of linear algebraic equations. 
Conform to the method, using an arbitrary division, we partition the boundary of L0 in n subintervals 
Δs = Δσ. Note, that the chosen division might be not uniform, for instance at the trailing or the leading 

edge, where the variation of the function   is stronger from point– to–point, the length of 

subintervals might be shorter. In each subinterval, the function   is assumed to be constant and 

equal to   where j represents the number of the middle–points of the considered subintervals. If 

the first division–points are debited by even numbers, and the division–points of the middle of the 
subintervals by odd numbers, then, conform to the approximation method, the integral equations (14) 
can be approximated by the following systems of linear algebraic equations: 
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Solving the algebraic system (16), we obtain  in n distinct point from the boundary of LI
kjϕ 0. 

Finally, from equations (13),  is determined in each point of the boundary’s division. I
iϕ

Proposition 2.5. [10], [11] In the second approximation step, the Fredholme integral equation 
(11) of the velocity potential is reduced to solving four systems of linear algebraic equations. 

Proof. From (8) and (10), a ςI and a ( )σIq)  is determined, respectively. Consequently, using the 
superposition rule of potential streams, we seek the solution of the Fredholme integral equation of 
second type (11) to be of the form: 
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where  k = 1 ÷ 4, are the solutions of the system 19 of integral equations: II
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Using the numeric method presented in proposition 2.4, by applying the Bogoliubov-Krîlov 
method, solving (19) is reduced to solving systems of linear algebraic equations. 

These systems of linear algebraic equations will have the form: 
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where  are obtained by using the Simpson formula for handling the 

double integral. 
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Solving the algebraic system (21), we obtain  in n distinct point from the boundary of LII
kiϕ 0. 

Finally, from equations (18), niII
i ,1, =ϕ  is determined in each point of the boundary’s division. 

 
3. THE CALCULUS ALGORITHM OF THE FLUID’S VELOCITY POTENTIALS 

THROUGH PROFILE GRIDS 
 

1. Given are: the entering values into the profile grids of p1, v1∞, α1 and the  asymptotic mean velocity 

mV
r

; the installation angle λ; the number of profiles n; the density ς0 and the sound velocity c0 

corresponding to the null–velocity point. The functions h(σ) and ( )σ
0R

R
  are given by their table 

of values; 
2. Conform to the chosen division, the coordinates σi (ξi, ηi), i = 1, 3, 5, . . . , 2n-1   are determined. 

The circulation Г is determined from the Jukovschi-Ciaplâghin condition [10], [11]; 
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4. Using the trapezoid method, I
iψ  is calculated from the integral equation (6), and, using (17), 
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5. The linear algebraic system (16) is solved, and, thus,  is obtained. Furthermore, from (13),  

is also obtained; 

I
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6. Using the Lagrange interpolation formula through five points (12),  is calculated. Next, from 

(8),  is determined, and, furthermore,  is also obtained; 

I
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I
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7. Using  and h = const, from the integral (20), by the trapezoid method, a   is 

determined. Using equations (19) and (20),  are obtained; 
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8. The integral equations (19) are solved, transforming them first into a linear algebraic system. 

Furthermore,  is obtained, and, from (18), is determined; II
kiϕ II

iϕ

9. Using the Lagrange interpolation formula through five points (12),  is calculated. Next, from 

(8),  is determined, and, furthermore,  is also obtained. Furthermore, using  , the next 

iteration  can be calculated, h=variable, and the algorithm continues. 
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4. CONCLUSION AND FURTHERWORK 
 
We have shown some practical aspects of the usage of the calculus algorithm for the study of the 

compressible fluid’s stationary movement through profile grids, on an axial–symmetric flow–surface, 
in variable thickness of stratum, namely : 

 the usage of the boundary element method with real values; 
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 the applicability of the successive approximation method w.r.t. the parameters ς (fluid’s density) 
and h (thickness variation of fluid stratum) for solving the integral equation of the velocity 
potential; 

 the usage of the Lagrangian interpolation formula through five points for calculating the 
derivatives of the velocity potential. 

Regarding practical applicability of our algorithm, our plans for the near future are: 
 make more test cases w.r.t. several input (geometrical and hydrodynamical) values of the velocity 

potentials taken from practical experiments involving profile grids; 
 study the possibility of applying the algorithm (i.e. the approximation methods) for the calculation 

of other fluid–characteristics. 
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