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Abstract: 

In this paper we develop an original model for the blood flow in capillaries. In the first approach the 
Stokes system is accepted for the blood flow in capillaries and the fluid is considered to be 
incompressible. The vessels’ walls have a linear elastic and permeable behavior. For the second model 
a non-Newtonian, rheological model for the blood flow, with a non-constant viscosity coefficient, is 
used, the walls of the capillaries being linearly elastic, permeable and porous.  
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1. INTRODUCTION 
  

The most important aspect of the blood flow in capillaries is to supply “with food” the living cells 
of the organs and to remove the byproducts from every cell. The capillary vessels are built so that 
molecules with different dimensions can penetrate through the tissues in the surroundings of the 
capillaries in both ways. Generally capillaries are considered as tubes with very thin and porous walls, 
through which the transport of certain substances are realized. The presence of these pores and the 
small diameter of the capillaries distinguish these types of vessels from the others. Due to this reduced 
diameter and the slow character of the flow we can neglect the non-stationary (pulsating) aspect 
connected to the rhythmical pumping of the blood by the heart. Furthermore we can neglect the 
inertial (convective) aspects connected to the viscosity of the blood. Moreover the permeable (porous) 
character of the capillaries is dominating the elasticity of the vessels’ walls. 
 
 2. NEWTONIAN MODEL FOR THE BLOOD FLOW IN CAPILLARIES 
 
 The first model we propose accepts for the blood flow in thin vessels the Stokes system for 
incompressible fluids, taking into consideration that the Reynolds number is small. Implicitly it is 
accepted that the blood is homogenous, the viscosity is constant, the flow has a laminar character and 
there are no exterior field forces. 
 The vessels’ walls have a linear elastic and permeable behavior and the fluid (substance) change 
through these walls, very small in volume, respects the Starling hypothesis [7]. This classical 
hypothesis, which was checked experimentally later by many researchers (Mauro [3], Meschia [4], 
etc.), maintains the fact that the mass debit through this kind of capillary wall is proportional with the 
pressure difference between the exterior and the interior of the capillary tube. Moreover, using the 
results of Beavers and Joseph [1], it is accepted the existence of a slip condition, along the permeable 
surface, which is “covered” by a porous media, an essential condition confirmed also experimentally. 
 For simplification we accept the axi-symmetric character of the flow, the axis of symmetry being 
Oz. Using the cylindrical coordinates ),,( zr θ , the motion domain will be, at every time t: 

)},,0( ),2,0[   ),,(/),,{()( LztzRrzrt ∈∈+<≡Ω πθηθ  (1)  
where R and L are the (initial) radius and the length of the tube respectively, η  is the elastic 

displacement of the wall )},0(),,({)( LztzRrt ∈+=≡Σ η at the considered moment. 

 Noting by ),( vu the velocity components of the blood in the directions z and r respectively, by p 

the pressure while byμ  the dynamic viscosity coefficient, the motion equations (Stokes) and the 
continuity equation becomes 
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 For the boundary conditions, noting by p  the average of the pressure values given in the 
respective section, we get: 

0=
∂
∂
r
u

 and 0=v , for 0=r  (5)  

u
kr
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−=

∂
∂

 and )( ν−= pKv , for η+= Rr  (6)  

apzrp =),( , for 0=z  (7)  

vpzrp =),( , for .Lz =  (8)  

Here u
kr

u β
−=

∂
∂

 is the Beavers-Joseph slip condition, where β is the slip parameter, while k 

is the specific permeability of the porous media, )( ν−= pKv  is the consequence of the Starling law, 
where K is the constant permeability of the wall, while ν (built by the interstitial and osmotic 

pressure) is a given constant. Concerning to ap  and vp  they are the arterial and venous pressure, 

both supposed constants. 
 Reffering to the elasticity of the capillary wall, accepting the linear elastic membrane model, 

the radial component of the stress can be expressed by the radial displacement η , such that: 
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where h is the thickness of the membrane, E the Young modulus,σ the Poisson coefficient, mρ is the 

density of the capillary wall, while refp is the reference pressure in the ”unperturbed” state, supposed 

to be constant (the above mentioned p is in fact refpp − ). 

 It is obvious that on a this kind of elastic wall the kinematic condition for the continuity of the 
pressure, evaluated on the deformed interface )(tΣ , must be satisfied, namely 

)),,((),( ztzRv
t
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+=
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 and .0)),,(( =+ ztzRu η  (10)  

These conditions together with the previous Beavers-Joseph and Starling conditions lead 

to )( γη
−=

∂
∂ pK

t
 and 0=
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∂
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u

 for η+= Rr  respectively. 

Concerning the dynamic condition, it implies the continuity of the stress along the deformable 
interface (wall). As the constitutive law accepted in this case is that of the Newtonian fluid, we must 
have along )(tΣ  

,]][2])[[( rrref Tpp =⋅−− enDT μ  (11)  
which leads to 

,
2)(1)1(]][2])[[( rrref T

tR
pp =

∂
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++⋅−−
ηημ enDT  (12)  

on )(tΣ , at any time t. 
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3. RHEOLOGICAL NON-NEWTONIAN MODEL 
 
 In the previous model the blood was investigated as a Newtonian fluid and the system of 
equations was the Stokes system. Now we accept for the blood a rheological non-Newtonian 
representation with a non-constant viscosity coefficient. All the other assumptions (non-stationary 
character, incompressibility, homogeneity, linear elasticity, porosity of the wall) are the same, like in 
the previous model. The Starling hypothesis and the Beavers-Joseph slip condition are also fulfilled. 
 We accept again the axi-symmetric character of the blood flow in the capillary tube, the axis of 
symmetry being Oz. Using the cylindrical coordinates ),,( zr θ , the motion domain will be, at every 

time t, )},,0( ),2,0[   ),,(/),,{()( LztzRrzrt ∈∈+<≡Ω πθηθ  where R, L, ),( tzη  and )(tΣ have 
the same meaning as in the previous model. 

  In the meridian plane const=θ if zu and ru are the components of the velocity in z and r 

directions, if p is the pressure (evaluated to a reference pressure refp ), then in the absence of the 

exterior forces, the mass conservation principle (continuity equation) can be written as 
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 Concerning  the flow equations they are obtained from the general Cauchy motion equations, 
where for the stress tensor we accept the following representation (rheological model for blood) 

,)(2)]([ 2 DIT RBCs
p

p ηη
η
αγ

γ
λ +++

∂
∂

+−= K&&
&

K
 (14)  

where D is the rate of strain tensor while I the unity tensor, p the physical pressure, while RBCη  is 

given by (the Cross model):  
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with 
2/1

24I=γ& , 2I being the second invariant of the rate of strain tensor D, sη  the plasma viscosity, 

pη and *
0η  the viscosity coefficients of the blood, α  the ”relaxation time”, k is a time constant for the 

shear thining behavior, n  the shear thining index, α  the mobility parameter, while the function 
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is the so called normal function in the variable γ& , which measures the variation of deformation. 
 For sake of simplicity we denote  
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cylindrical coordinates, we arrive to the following two equations of flow (in zu and ru , 0=θu ) 
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 These evolution systems are completed by the boundary conditions which express both the 
presence of a pressure gradient along the Oz axis (in accord with the rhythmical pumping of the blood 
in vessels) and the elastic character of the permeable, porous wall, more precisely  
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 and )(K ν−= pur  for ),( tzRr η+= , 
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(the first relation in (20) expresses the Beavers-Joseph slip condition with the slip parameterβ  while 

K is the specific permeability of the porous media, meantime )(K ν−= pur is the consequence of the 

Starling law, with K the constant permeability of the wall,ν ,built by the interstitial and osmotic 
pressure, supposed to be fixed and a a given constant), while for the pressure we have 
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of the motion (0, T). 
 Observations: These boundary conditions on the “edges” 0=z  and Lz = of the capillary are in 

accord with the acceptance of a representation for the pressure of the type )()cos( rf
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namely of a pressure gradient (in the cylindrical reference rz ee rr  , ) under the form 
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−= , in accord with the motion of the pressure in the interior of 

the capillary. 
 On the other hand accepting for the capillary wall the linear elastic membrane model, the radial 
component of the membrane’s stress is expressed by the radial displacement η  as follows 
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where h is the thickness of the membrane, E the Young modulus,σ the Poisson coefficient, mρ is the 

density of the capillary wall while refp is the reference pressure in the ”unperturbed” state. It is evident 

that this stress must coincide with the stress generated by the blood on the same radial direction, 

namely rr TenT =⋅=
rrr

T , which represents the relation for determining f (the pressure) or ),( tzη . 
 At the same time the kinetic condition must be satisfied on the elastic wall, 

) ),,(( ztzRu
t r ηη

+=
∂
∂

 but also 0) ),,(( =+ ztzRuz η , what leads to )),,((K νη
−=

∂
∂ trzp

t
 and 

 0=
∂
∂

r
uz for η+= Rr  respectively. 

 It can be remarked that the last relation, together with 0) ),,(( =+ ztzRuz η , implies 0=zu  

in the whole a surrounding of the elastic wall while the conditions 0=
∂
∂

r
uz and 0=ru for the axis 

0=r  show that zzeuu rr
=  depends only on z and t so that we have a pulsating flow along the axis Oz, 
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which “calms down” on the elastic wall ( 0=zu ) where the exterior imposed pressure will have a 

minimum. At the same time from 
),(
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condition rr Ten =⋅
rrT  in cylindrical coordinates. More precisely if we note by  

)]([ 2K
K

p

pP
η
αγ

γ
λ +
∂
∂

+= &&
&

 (24)

the equilibrium condition becomes   
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what provides an equation to determine the deformation of the capillary wall, namely ),( tzη , so that 
the whole set of unknowns of our problem can be determined. 
 

4. CONCLUSIONS 
  
In this paper we elaborated an original mathematical model for the blood flow in capillary 

vessels. First we presented a model where the blood was accepted as a Newtonian fluid. In the second 
approach we extended the model to a more general rheological (non-Newtonian) blood behavior which 
stands closer to the realistic phenomena. 

The previous model will be approached numerically in another paper where we will also consider 
a more general behavior for the blood.  
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