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Abstract: 
In this paper, taking into consideration the rheological Cross model, we elaborate a three dimensional 
axi-symmetric numerical model for the blood flow in thin vessels with adequate algorithms. First we 
consider the vessel wall to be rigid than we take into account the elastic and porous behavior of this 
wall what leads to a more realistic approach of the problem. 
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1. INTRODUCTION 
 
In the proposed model, set up in this work, we accept for the blood flow a rheological non-

Newtonian representation with a non-constant viscosity coefficient. The blood is considered to be a 
homogenous fluid, the flow has a laminar character and there are no exterior field forces. The walls of 
the vessels have a linear elastic, permeable and porous behavior. For the blood flow in the vessel we 
also accept an axial symmetry (Oz being the axis of symmetry). Using the cylindrical coordinates 

),,( zr θ , the motion domain will be, at every time t, 

)},,0( ),2,0[   ),,(/),,{()( LztzRrzrt ∈∈+<≡Ω πθμθ  where R and L are the (initial) radius 

and the length of the tube(vessel) respectively, μ  is the elastic displacement of the wall 

)},0(),,({)( LztzRrt ∈+=≡Σ μ at the considered moment.  
 
2. NUMERICAL MODEL FOR THE BLOOD FLOW IN THIN VESSELS 
 
This model is based on the rheological Cross model, where the viscosity coefficient for the blood 

is not constant and can be written as follows 
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where sη  is the plasma viscosity, 
2/1

24I=γ& , 2I being the second invariant of the rate of strain 

tensor D (D is the rate of strain tensor), *
0η  the viscosity coefficient of the blood and k is a time 

constant for the shear thining behavior. 
 In the absence of the exterior forces we can write for the continuity equation 
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where zu and ru are the components of the velocity in z and r directions respectively. For the flow 
equations we use the general Cauchy motion equations, where we accept for the stress tensor the 
following representation 
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where where D is the rate of strain tensor while I is the unity tensor, p the physical pressure and RBCη  

is given by the Cross model 
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with n   the shear thining index, α  the mobility parameter, while the function 
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is the so called normal function of the variable γ& , which measures the variation of deformation. 
 Using the above mentioned Cross model, the continuity equation and the Cauchy motion 
equations, expressing the tensor D and the other involved operators in cylindrical coordinates, we 
arrive to the following three dimensional axi-symmetric system 
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where u is the radial velocity (in direction r), v the axial velocity (in direction z) and p is the pressure, 
while 
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 These evolution systems are completed by the boundary conditions which express both the 
presence of a pressure gradient along the Oz axis (in accord with the rhythmical pumping of the blood 
in vessels) and the elastic character of the permeable, porous wall 
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(11)  

In the first relation of (11) the Beavers-Joseph slip condition is expressed with the slip 

parameterβ  while K is the specific permeability of the porous media, meantime )(K ν−= pur is the 

consequence of the Starling law, with K the constant permeability of the wall, ν  is built by the 
interstitial and osmotic pressure, supposed to be fixed, and a is a given constant. 

We have calculated the case of the rigid wall and numerical tests have been effectuated for a 
vessel with radius 100μm. It was used the finite difference method (to simplify the program on a right 
angle domain), with separate nodes for u, v, p. 
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 The evolution in time was made with the 
Adams-Basforth-Crank-Nicholson method with 
implicit part for the Laplacian and explicit part for 
the non-linear components. Thus, at every time 
step a huge linear system is to be solved but with a 
sparse matrix. It is necessary to work with small 
time step (dt=0.0001) for assuring the numerical 
stability. The algorithm presents some oscillations 
of the calculated solution but these don’t disturb 
the stability. The work efficiency is acceptable 
(15000 time steps in about 2 hours). The attached 
figure 1 presents the evolution of the longitudinal 
velocity in the centre of the vessel for oscillating 
input and output pressure. 
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3. NUMERICAL MODEL FOR THE ELASTIC WALLS 

 
 One step further we use the presented mathematical model in the case when 
the elasticity and the porosity of the vessel wall are also considered.  The data used 
for the numerical algorithms were achieved experimentally by C. Balan [1]. 

 We have worked with a small vessel segment of radius m410−  and length of 

m410*4 − . The blood parameters of the proposed model are: PasS
310−=η , 

Pas1*
0 =η , 100=k , 2.0=n , 100=λ , 50=α , the mass density is 3/1060 mkg . 

We considered an oscillatory pressure Pastpin )2cos(15010100 π+= on the input 

boundary ( 0=z ) and a constant pressure on the output 

boundary Papout 10000= . The permeability constant is 510*5 −=K  and the 

osmotic pressure is 9900=ν . On the axis of symmetry we imposed the axial 
symmetry requirements and on the tube walls the Beavers-Joseph condition [2] and 

the permeability condition (Starling law [5]) )(K ν−= pur . 

 
Figure 3. The r-displacement of the wall at points 

P1, P2 and P3 
Figure 4. The WSS at point P2 

On the attached figures some results of the numerical experiments are presented: on figure 2 the 
velocity field at the moment 1=t , on figure 3 the r-displacement (in the direction of the radius) of the 

wall at points P1, P2 and P3, on figure 4 the wall shear stress ( )(
r
u

z
uWSS zr

∂
∂

+
∂
∂

=η  evaluated at P2 

is shown. 
 

 
Figure 1. Evolution of the central axial velocity 

 
Figure 2. The 

velocity field at 
time t=1 
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4. CONCLUSIONS 
 
 In this paper by considering a more general rheological model for the blood flow in thin vessels, 
with adequate numerical algorithms and solvers, we got some results for the longitudinal velocity in 
the case of the rigid vessel wall. Considering the elastic, porous behavior of the wall we obtained other 
results for the velocity field, for the r-displacement of the wall and for the wall shear stress (WSS).  
 In the future we will try to elaborate other numerical algorithms for reducing the calculation 
time and to eliminate completely the oscillating behavior.  We also mention that this implemented 
rheological model can be easily set up, adjusting the parameters to obtain a better correspondence 
with the physical measurements. 
    The completed model can be applied for stenotic arteries, even in the 3-D case (axi-symmetric). 
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