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ABSTRACT: 
This paper presents the experimental verification of an approximate technique for damage identification in beam-
like structures, which is based on the use of bending frequency changes and nonlinear regression analysis. The 
proposed technique was explained in details in [7] so only few necessary steps are recalled here. The identification 
of damage location and its depth is performed by use of experimentally measured frequency changes and 
previously established regression relations between bending frequency changes and damage parameters. The 
experiments were performed on the intact and damaged beams. The damage in these experiments is made by saw 
cut as a narrow open notch perpendicular to the beam axis. The results of identification are promising taking into 
account inevitable modelling and measurement errors.  
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1. INTRODUCTION 
   
Damage in a structure changes its dynamic characteristics. Significant research has been 

conducted in damage detection and structural health monitoring using vibration-based techniques. 
The efforts in this area are still put towards developing new, more accurate and efficient damage 
detection techniques.  

Modal parameters, such as natural frequencies, damping factors, and mode shapes are greatly 
affected by presence of a damage. These parameters can be measured more or less accurately using the 
available modal testing methods. An extensive survey of the literature dealing with methods for 
identifying cracks and damages was given by Dimarogonas [4] and Doebling et al. [5]. The use of 
frequency measurements in damage identification is very wide, mostly due to the fact that frequencies 
are relatively easy to measure. Salawu [15] presented damage identification techniques based on 
frequency information. Some of frequency-based techniques are presented in [1,10,11,12]. 

The aim of this paper is to present the experimental verification of the approximate damage 
identification technique that was presented in details in [7]. The technique is based on numerical data 
and regression relations between the bending frequency changes and damage parameters. 
Experimentally measured first four bending frequencies are used for identification of damage 
parameters (location and depth). 

 
2. A BRIEF SURVEY ON THE IDENTIFICATION TECHNIQUE 

 
A damage identification technique, which will be used here, is explained in details in [7]. A brief 

survey on the technique and the established regression relations will be recalled here. 
A damage that occurs in a structure causes a change in mass and stiffness matrices and, 

consequently, in the natural frequencies. Using the matrix equation for undamped natural vibrations 
 

            0KqqM =+&&                                                      (1) 
 

the eigenvalues i.e. undamped natural frequencies of the structure can be obtained. Here, the 
 represents the mass matrix, M K is the stiffness matrix, and  and q&& q  are the acceleration 

and displacement vectors, respectively.  
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On the basis of Eq(1), the eigenvalues of the intact and damaged structure can be obtained by 
numerical analysis. Although some analytical methods, for instance shown in [2,3,8,16], may also 
provide frequency values, which are the input data for regression analysis, the numerical method is 
much faster and easier. 

The procedure proposed in [7] starts with the numerical model of the beam. Let the numerical 
model of the free-free beam has the following properties: length Lb=400 mm, height H=8,16 mm, 
width B=8.12 mm, modulus of elasticity E=2.068x1011 Pa, mass density ρ=7820 kg/m3, and Poisson’s 
coefficient ν=0.29, Fig.1. The damage is simulated as a narrow open notch perpendicular to the beam 
axis. The location of the damage is Ld , its depth is a, and the width of the notch is 1mm. 

 
 
 
 
 
 
 
 
 

 
 

Figure 1. Geometry of the free-free beam with a notch 
 

The beam is modeled using solid elements in software I-DEAS Master Modeler 9 and a number 
of numerical simulations were performed. Relative location L = Ld / Lb and relative depth of the 
damage D = a / H were varied with the aim to collect the values of the first four natural frequencies of 
the undamaged and damaged beams. Due to structural symmetry, the location of the notch Ld 
measured from the left end of the beam was varied from 10 mm to 200 mm in 10 mm increments. The 
depth a of the notch was varied from 1 mm to 4 mm in 1 mm increments. 

Then, the relative frequency parameters FI = fI(d) / fI(u) , I=1,2,3,4, were calculated. Here, fI 
represents the Ith natural frequency, subscript (d) denotes the damaged beam, and subscript (u) refers 
to the undamaged beam structure. 

Numerical values of the relative frequency parameters FI, I=1,2,3,4, were taken as the input data 
for establishing the regression relations between the relative frequency changes and damage 
parameters (L and D). The Nonlinear Estimation option in the software STATISTICA 6.0 was used for 
statistical estimation of these regression relations, [17]. After several attempts, the best fit was chosen, 
taking into account the coefficient of correlation and shape of the nonlinear curve. 

The following regression relations for the first four relative frequency parameters FI, I=1,2,3,4, 
are obtained for the beam under consideration, [7]:  
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As can be seen, these regression relations include the quadratic influence of the relative depth D 

and polynomial influence of the relative location L. The corresponding coefficients of correlation are 
very high (0.996 for F1, F2, F3, and 0.998 for F4). The obtained regression curves along with the 
numerically obtained relative frequency changes for different relative locations and some relative 
depths are presented in Fig.2. 

It can be seen that the largest differences between the values obtained numerically and those 
calculated by regression relations given by Eqs.(2)-(5) are at those locations of the beam where modal 
nodes and modal extreme points occur. This results from the nature of regression relations to smooth 
the data at extreme points. 
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The obtained regression surfaces, if cut by an appropriate horizontal plane that corresponds to a 
specific value of the frequency change, gives the  intersection curves in D-L plane. These intersection 
curves contain all possible values of D and L that correspond to the same frequency change, Fig.3.  

The intersection curves should theoretically give a common intersection point (Dest, Lest) in D-L 
plane, which shows the estimation of damage parameters, see [13,14,18]. However, in practice, it 
would be very hard to obtain the same intersection point for all four frequency curves as the numerical 
values of intersection point coordinates can differ more or less.  

It is also obvious that changes in only two first frequencies should be sufficient to find the 
characteristic intersection point. However, due to inevitable modeling errors (i.e. differences between 
the numerical model and the real structure) and measurement errors, one should not rely solely on 
only two measured frequency changes to find the intersection point (Dest, Lest). It is much safer and 
reliable to locate this point using more frequency changes, which also contribute to the robustness of 
the technique. Basically, the first four frequencies are shown to be sufficient to identify a crack in the 
beam, [18].  

Also, as shown in Figure 3, there are another intersection points in the D-L plane between the 
curves obtained by a pair of frequency changes. However, these intersection points are isolated and not 
confirmed by the other frequency changes so in analytical approach (without graphical presentation) 
they should be eliminated. 
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Figure 2. Relative frequency changes F1- F4 in relation to the relative location l and relative depth d of the notch 

obtained by numerical model, regression expressions and experimentally 
 

Using an appropriate mathematical method to solve the system of regression relations, one can 
found an appropriate set of intersection points. Next, the technique proposed in [7] suggests finding 
the three closest intersection points in the appropriate set of intersection points, i.e. those that give 
minimal sum of their distances from their mean value. The coordinates of their mean value can be 
adopted to represent the damage parameters. The only prerequisite here is that this mean value should 
not estimate the damage much beyond the numerically observed ranges of L and D, i.e. the ranges that 
are covered by the adopted regression curves (here, the range is: L=0.025 to 0.5, D=0.125 to 0.5). In 
an opposite case, the next combination of three intersection points giving minimal sum of distances 
from their mean value should be appropriate.  
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Figure 3. Graphical presentation of finding the intersection point  

Of frequency curves in D-L plane (theoretical case) 
 

3. ACQUISITION OF THE EXPERIMENTAL DATA 
 

The proposed procedure will be checked by experimentally measured values of frequency 
changes, [6].  

The experimental setup is shown on Fig. 4a. The instruments used in this experimental study 
were: impact hammer B&K 8202 with load cell B&K 8200, accelerometer B&K 4394,  frequency 
analyzer HP 3567A, interface HP82335A and a personal computer. 
 
 

 
 

                                         
 
 

            
a)                       b) 

Figure 4. Experimental setup: a) scheme; b) seven beam samples 
 

Experiments were performed on seven beam samples in free-free boundary conditions, Fig.4b. 
The free-free state is attained by hanging a beam using two thin silicon ropes. Cracks of varying depths 
are made with a saw at different locations on beams. Since the crack is made with a thin blade (1mm in 
width), the crack always remains open during the vibration test. Each beam model was made of a steel 
bar with a nominal cross-sectional area 8 mm by 8 mm and a length of 400 mm. The frequency 
measurement was performed twice for each of 7 undamaged beams and 28 combinations of crack 
locations and depth. 

The previously established numerical model and regression curves were used for all measured 
beams despite slight discrepancies in their dimensions and frequency values in undeformed state, 
Fig.5. This means also that there were the differences between the unique numerical model and these 
seven measured beams, but on the other hand this enabled to check the robustness of the proposed 
technique. Of course, in real practice, the efforts should be put to establish the numerical model that 
fits the real structure the best, which will give more chance to the better identification results. 
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Figure 5. The first four bending frequencies of the measured undamaged beams  
in comparison to the frequencies of the numerical model 

 

 
        a) 

 
          b) 

Figure 6. Two independent measurements of the f ency of the beam sample: a) undamaged beam, b) irst frequ
damaged beam - case: L=0.35, D=0.375 
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Figure 7. The values of the first four bending frequencies  
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The mean value of frequencies obtained by two independent measurements of undamaged and 
dama

s on the frequency and 
resolu

, 

ginning of frequency value 
stabil

easurement of natural frequency changes are shown in Fig. 7. It is 
obvio

4. DAMAGE IDENTIFICATION USING EXPERIMENTAL RESULTS 

n example of identification. Let s reveal the damage parameters D and L in case that the 
measu

 the regression expressions (2)-(5) and all pairs of two measured frequencies, the real 
value

Table 1. The values of relative location L and relative depth D calculated 
 fo

Frequency P
location L  

ged beams, Fig.6, was used to calculate the frequency ratios FI, I=1,2,3,4.  
It should be stated here that the value of the measured frequency depend
tion range, and the number of impacts. These ranges were adopted during measurements:  

- 1th frequency: frequency range 200-400 Hz, resolution 0.125 Hz, 5 impacts, 
- 2nd & 3rd frequency: freq. range 600-1600 Hz, resolution 0.25 Hz, 10 impacts
- 4th frequency: frequency range 1.5-5.5 kHz, resolution 1 Hz, 10 impacts. 

The number of impacts were chosen in dependence of the be
ization, Fig.7, except for the fourth frequency where higher number of impacts (20 or 30) would 

require a lot of measurement time. 
The results of experimental m

us that these experimental values differ more or less from those calculated for the unique 
numerical model of the beam that is used to represent all of the seven measured beams. Besides the 
modelling discrepancies, this is partially due to less accurate measurement of low frequency changes 
(inherent to small relative depths D) and inability to accuratelly cut the nominal depth of the notches. 
 

 
’A

red frequency changes are the following: F1= 0,973428, F2= 0,970231, F3= 0,999468, F4= 
0,980017. 

Using
s of L and positive values of D can be calculated. These pairs of D and L make an appropriate set 

of intersection points, Table 1. 
 

r all combinations of the first four frequencies (for experimental example) 

curves 
oint Relative Relative Frequency Point 
No. depth D curves No.     

Relative 
depth D 

Relative 
location L 

F1& F2   -0,44358 F1& F4   -0,35632 
F1& F2   0,038303 F1& F4   0,028291 
F1& F2   0,054851 F1& F4   0,04493 
F1& F2 No.1 0,353376 0,344738 F1& F4 No.6 0,53491 0,240988 
F1& F2 No.2 0,315118 0,568344 F1& F4 No.7 0,33754 0,362171 

    F1& F4 No.8 0,303154 0,416302 
    F1& F4 No.9 0,289114 0,520827 

F1 & F3   -0,33236 F2 & F4 No.10 0,16204 -0,35515 
F1 & F3   0,028603 F2 & F4   0,026761 
F1 & F3   0,053006 F2 & F4   0,044545 
F1 & F3 No.3 0,293947 0,535885 F2 & F4 No.11 0,367256 0,212232 
F1 & F3    F2 & F4 No.12 0,363009 0,353158 
F1 & F3    F2 & F4 No.13 2,579492 0,476197 

    F2 & F4 No.14 2,483278 0,499449 
F2 & F3 No.4 0,149056 -0,33211 F3 & F4   -3,29249 
F2 & F3   0,028539 F3 & F4 No.15 0,032081 -0,32765 
F2 & F3   0,052999 F3 & F4   0,028619 
F2 & F3 No.5 0,567081 0,536263 F3 & F4 No.16 1,249093 0,053548 
F2 & F3    F3 & F4 No.17 0,178665 0,534983 
F2 & F3    F3 & F4    

    F3 & F4    
Note: Empty spaces n the column D refer to complex values

he procedure of finding the closest three points between these 17 points gave the following 
result

 

 i   
 
T
s: Dest= 0,351308 and Lest =0,353356 for the relative depth and relative location. In absolute 

values, the estimated location of the damage is 141,3423 mm measured from the left end of the beam 
and the value of damage depth is 2,810467 mm (the actual location is 140 mm and the nominal depth 
is 3 mm). This estimation is made by intersection points No. 1, 7 and 12, i.e. by F1, F2 and F4. The third 
frequency change has a nodal point close to this damage location, so it was unable to accurately locate 
the damage.  
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Figure 8. Results of damage identification using 
experimentally measured frequency changes 

(    Actual Damage Parameters,    
   Estimated Damage Parameters) 

 
The identification procedure described 

above was repeated for 28 cases of damage 
parameters (7 damage locations with 4 
depths) using the measured frequency 
changes.  

The results of identification are shown 
in Fig. 8. It is obvious that despite of all the 
previously mentioned unadequacies and 
limitations, the results of the adopted 
identification technique in real conditions are 
quite satisfactory. If the allowed error for the 
absolute location is ± 20mm, then only 3 of 
28 locations are estimated incorrectly, giving 
rise to the identification accuracy of location 

of 89.28 %. If the appropriate error for the absolute depth is ± 0.5mm, then 5 of 28 depths are 
incorrectly identified, so the identification accuracy of the depth is 82.14 %.  

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

Relative depth D,-

R
e
la

ti
v
e
 l
o
ca

ti
o
n
 L

,-

c

 

The identification procedure gave less accurate results in cases of small frequency changes due 
to difficulties to accurately measure them. Also, the identification of damages located at modal nodes 
and modal extreme points are less accurate due to the smoothing property of regression relations. As 
expected, the best results are obtained for damages with larger relative depths. For better results i.e. 
for a specific real beam the efforts in establishing good numerical model should be previously put. 

 
4. CONCLUSION 

 
The results of experimental verification of the approximate identification technique introduced 

in [7] are presented in the paper. For experimentally measured frequency changes, the results of 
damage identification are quite satisfactory expecially for greater depth of the damage. The 
identification of minor damages could be improved with numerical model updating, for instance in [9], 
better mesh refinement with consequent higher number of numerical data required for establishing 
the regression relations. However, the measurement of small frequency changes due to minor damages 
represents an inherent problem in real practice.  
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