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ABSTRACT: 
Theoretical dependences for studying the influence of the times in transitional processes on the dynamic load of 
the elements of lifting device and supporting metal structure are worked out. Dependencies for finding of the 
influence of the start / stop time ratio and the characteristic oscillations of the load after the completion of the 
transitional processes on the minimum and maximum amplitude values for the acceleration and the dynamic 
force are received. 
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1. INTRODUCTION 
 

The work of the lifting devices is characterized by frequent starts and stops in both moving 
directions which is related to the arising of accelerations, dynamic forces and oscillations with values 
and durations that have an influence on the duration of the transitional processes, the precision of 
positioning and comfort work. The presence of various elastic links between components of the device 
results in vibration processes during the start and stops that have fading behaviour and also continue 
after the acceleration or deceleration of the load. 

The limitations of the amplitudes and durations of the oscillations are desirable not only because 
of the process requirements of the handling process but also to reduce the dynamic loads of the device 
components and supporting metal structure. 

The lifting devices are built using components with various elasticity degrees, for example rope 
or chain, clutch, shafts, etc. The most important component is the flexible element (rope or chain) that 
together with the load forms a system with comparatively low frequency of characteristic oscillations 
and its half-cycles is commensurable with the acceleration time of the motor [1]. The characteristic 
oscillations’ frequencies caused by the elasticity of other elements of the lifting device, are considerable 
higher. 

The subject of this work is to establish methods for investigation of the dynamic loads of the 
components of a lifting device depending on the transitional processes times and the durations of the 
characteristic oscillations for the load. 

 
2. EXPOSITION 
 
A general view of a rope and drum lifting device may be illustrated with the kinematical scheme 

shown on Fig. 1. This device is substituted with an equivalent 2-mass system shown on Fig. 2 that 
describes the dynamic processes of a tackle system [1], [2] with sufficient precision factor. Using the 
dynamic model the dynamic loads of the device during the transitional processes may be investigated 
and the quality of the drive system to be analysed during the selection of the motor output, start and 
stop controls, the brake and the related elements. 

During the acceleration at the motor start the differential equations are obtainable, from the 
requirement for equilibrium of the torques, respectively the forces, respectively (1) for the motor rotor 
rotation caused by continuous torque, and (2) of the load movement: 
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where p0 is the frequency of the characteristic cycle of the system, s-1; k - fading factor, s-1; 
ε  and a  - average acceleration values, respectively angular for the motor rotor and lineal for the load 
in case of sturdy link between the two masses. 
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Figure 2. 2-mass dynamic model of rope  

and drum lifting system 
Figure 1. Rope and drum lifting 

device 
     а) adjusted to the motor shaft; 
     b) adjusted to the straight-forward   movement  

The acceleration values are calculated by the following expressions: 
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where  
Q and G – the weights of the load, resp. load-catching 
device, N; 

Mmot is the average starting torque of the motor, 
Nm; 

D – the drum diameter where the axes of the rope are 
located, m; 

Ms – resisting torque caused by the load weight 
adjusted to the motor shaft, Nm; 

ur and up – the gear ratios of the gear unit, resp. the tackle. Fmot – the driving force adjusted to the load, N; 
The p0 and k for the equation (1) are calculated by the expressions: 
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and for the equation (2) according to the formulas: 
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where  
 m1 – reduced rotating weights to straight-forward moving 
ones on the load, kg; 

J1 is the reduced mass moment of inertia of all 
rotating weights on the motor rotor, kgm2; 

 m2 – the weights of the load and load-catching device, kg; J2 - the reduced mass moment of inertia of straight-
forward moving weights on the motor rotor, kgm2;  c – the hardness factor of the system; 

d – the damper factor of the system 
The “+” and “-“ signs in the equations (3) and (4) are valid for the acceleration processes of the 

load in upward, resp. downward directions. 
The solution of the differential equations for the accelerations at starting of the motor from the 

state of static pendant load with initial conditions ot = ,  and  for the 
motor rotor is the following: 

0/ 22 =dtd ϕ 0/ 33 =dtd ϕ

  ⎥
⎦

⎤
⎢
⎣

⎡
α−−ε=ε − )ptcos(e

p

p
1 kt0 ,                                                                 (9) 

and for the load is 
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where                                              22
0 kpp −=                                                                                   (11) 

is the frequency of the fading oscillations of the system  
p
k

arctg=α .                                                     (12) 

During the acceleration, the force F is a sum of the gravitational force of the load Q, the weight 
of the load-catching device G and the inertia force m2a that is the disturbance force for the system: 
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where g = 9.81 m/s2 is the gravity factor. 
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The inertia force m2a consists of one constant component corresponding to the a and one 
variable. From (13) follows that in case of acceleration with lifting load, the greatest dynamic load 
appears with some delay equal to the half-cycle T/2 of the fading oscillations. 

At the completion of the acceleration process, the system performs free fading oscillations. The 
differential equation of the movement of the load after the acceleration process is received from (2) 
with 0a =  

0p
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The initial conditions for solving the equation (14) are determined by the acceleration value and 
the first derivative of the acceleration in the end of the acceleration process with duration tm. From 
(10) for t = tm: 

 ⎥
⎦

⎤
⎢
⎣

⎡
α−−= − )ptcos(e

p

p
1aa m

kt0
п

m ,                                                      (15) 

)ptsin(е
р

р
aa m

kt
2
0

п
m α−= −& .                                                    (16) 

The solution of (14) with initial conditions (15) and (16) is 
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 The force in the flexible link rope – motor in the process of free fading oscillations is 
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From (20) follows that the force consists of the weights Q and G and one variable fading 
component and the A factor determines the acceleration amplitude and the dynamic load depending 
on the duration of the initial rotation and the frequency of the fading oscillations. The acceleration 
amplitudes and the maximum value of the dynamic force after the completion of the acceleration 
process depend on the ratio of acceleration time tm and the fading oscillations period for the load T. 

As  for performing analysis of the cases considered one may assume  and 

. In such case the lowest values of F are received at ptm
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During the lifting, the maximum dynamic load is normally shown at acceleration. This time is 

close to and most frequently higher than the period of the fading oscillations of the load. In case of 
lowering, the maximum dynamic load is read after the acceleration. In such case the acceleration time 
may be close to the cycle or the half-cycle of the fading oscillations of the load. This means that for 
given lifting devices and load according to the rope length (the period of the fading oscillations), both 
very high and very low values of the maximum dynamic load may be received. In this case, in the most 
unfavourable case ( ) in lowering, the dynamic load is greater than the load in lifting which is 
confirmed by the results attained in tests of dynamic loads of lifting devices of electric hoist [2]. 

2/Ttm=

During the processes of deceleration, the load oscillations and dynamic loads are described by 
differential equations (1) and (2) and in equation (3) the average starting moment of the motor Mmot 
will be replaced by the braking moment Mb taking into account the respective sign. At deducing of the 

equation for delays, the same initial conditions are used ( 0t = ,  и ) that 
correspond to movement with stable speed and for the delays and the dynamic loads during the 
stoppage the equations (9), (10) and (13) may be used. 

0dt/d 22 =ϕ 0dt/d 33 =ϕ

For analysis and estimation of the dynamic loads of the components of the lifting device and 
metal structure supports, the dynamic factor kd is used determined as a ratio of the maximum force 
Fmax to the weight of rated load Qn and the weight of the load-catching device G 
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The dynamic overload is calculated by the factor 
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In case of lifting, the maximum dynamic overload arises during the acceleration in the time 
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whence for the dynamic overload the following equation is received 
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During deceleration, after lowering with braking moment MD, the dynamic overload will be: 
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In case of lowering and deceleration after lifting, the maximum dynamic overload in most 
unfavourable case arises after the transitional process with duration tm = T/2 and the factor A 

according to the (18) will be  2

kT
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−
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The maximum dynamic overload after completion of the transitional process arises after some 

new time interval t = T/2 where from (20) follows that the maximum possible dynamic load is 

 2

kT
02

kT

n2nmax е
р

р
е1аmGQF

−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++= .                                           (27) 

In case of lowering with average starting moment Mmot the dynamic overload factor will be 
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In case of stopping after lifting with braking moment Мb 

  
0pr

snb
2d Juu2

)ММ(D
Аk

′+
=Δ .                                                            (29) 

3. CONCLUSIONS 
 

1. Methods for investigation of the influence of the start / stop time ratio towards the duration of the 
fading oscillations of the load onto dynamic load of the elements of lifting device, are established. 

2. Dependencies for maximum dynamic overload for most unfavourable case of the ratio of the 
durations of the transitional processes and the half-cycle of the fading vertical oscillations of the 
load are received. 

3. Methods for calculation of rational durations of transitional processes on a base of the 
dependencies received according to the rope length may be established in order to decrease the 
dynamic load of the elements of the lifting device. 
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