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ABSTRACT: 
Current engineering analyses rely on running expensive and complex computer codes. Statistical techniques 
are widely used in engineering design to construct approximate models of these costly analysis codes. These 
models referred as metamodels, are then used in place of the actual analysis codes to reduce the 
computational burden of engineering analyses. Metamodeling involves sensitivity analysis, design of 
experiments, and regression analysis. This paper reviews the concepts of developing a metamodel and 
applying to design optimization process. 
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1. INTRODUCTION 
 
Traditional engineering design optimization which is the process of identifying the right 

combination of product parameters is often done manually, time consuming and involves a step by 
step approach. Approximation methods are widely used to reduce the computational burden of 
engineering analyses.  The use of long running computer simulations in design leads to a fundamental 
problem when trying to compare and contrast various competing options. It is also not possible to 
analyze all of the combinations of variables that one would wish. This problem is particularly acute 
when using optimization schemes. Metamodels, also referred as surrogate models, are a cheaper 
alternative to costly analysis tools and can significantly reduce the computational time involved. 
Modern optimization techniques like Genetic Algorithms (GA) have been found to be very robust and 
general for solving engineering design problems. Evolutionary algorithms such as GA have been used 
with metamodels (surrogate models) to reduce the cost of exact function evaluations. In this paper, a 
methodology of developing metamodel and applying it to the optimization problem is explained. As a 
case study, the roof slab of a Prototype Fast Breeder Reactor was taken and design optimization was 
carried out. In this approach, experimental design, metamodels, evolutionary algorithm, and finite 
element analysis tool are brought together to provide an integrated optimization system. 

Metamodelling involes (a) choosing an experimental design for generating data, (b) choosing a 
model to represent the data, and (c) fitting the model to the observed data. There are several options 
for each of these steps, as shown in Table.1. Alexander et. al [1] discussed the recent advances in 
surrogate based design for global optimization. Simpson et.al[9] has done a survey on the application 
of metamodels on design. The paper also gives the following recommendations: (i) If many 
factors(more than 50) must be modeled in a deterministic application, neural networks may be the 
best choice (ii) If the underlying function to be modeled is deterministic and highly nonlinear in a 
moderate number of factors (less than 50, say), then kriging may be the best choice despite the added 
complexity, (ii) In deterministic applications with a few fairly well behaved factors, another option for 
exploration is using the standard Response surface methodology approach. In Simpson, et al.[8], 
kriging methods are compared against polynomial regression models for the multidisciplinary design 
optimization of an aerospike nozzle. Fasihul et al [4] investigated the effects of experimental design on 
the development of artificial neural networks as simulation metamodels. This paper shows that a 
modified-Latin Hypercube design, supplemented by domain knowledge, could be an effective and 
robust method for the development of neural network simulation metamodels. Nestor et.al.[6] 
discussed the fundamental issues that arise in the SBAO of computationally expensive models such as 
those found in aerospace systems. The paper mainly focused on the design of experiments based on 
Latin Hypercube Sampling (LHS) & Orthogonal Arrays (OA) and Surrogate modeling techniques 
based on polynomial regression model, kriging and radial basis function. Ruichen et.al [7] compare 
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four popular metamodeling techniques— Polynomial Regression, Multivariate Adaptive Regression 
Splines, Radial Basis Functions, and Kriging— based on multiple performance criteria using fourteen 
test problems representing different classes of problems. Giunta, et al. [5] also compare kriging models 
and polynomial regression models for two 5 and 10 variable test problems. In Varadarajan, et al. [12], 
Artificial Neural Network (ANN) methods are compared with polynomial regression models for the 
engine design problem in modeling the nonlinear thermodynamic behavior. In Yang, et al., (14), four 
approximation methods— enhanced Multivariate Adaptive Regression Splines (MARS), Stepwise 
Regression, ANN, and the Moving Least Square— are compared for the construction of safety related 
functions in automotive crash analysis, for a relative small sampling size. Similarly many researchers 
have compared the various experimental designs and/or metamodeling techniques. Only limited 
researchers are explained about the application of metamodel in the optimization process. This paper 
explains the methodology of performing experimental design, creating metamodel and applying it to 
the optimization. 

Table 1. Types of Metamodelling Techniques 
EXPERIMENTAL DESIGNS MODEL TYPES MODEL FITTING 

Factorial Design(FD) 
Central Composite Design(CCD) 

Orthogonal Array(OA) 
Latin Hypercube Sampling (LHS) 

Box-Behnken 
D-Optimal 
G-Optimal 
Hexagon 
Hybrid 

Random selection 
Select by hand 

Polynomial 
Splines (linear, cubic) 

Radial Basic Function(RBF) 
Neural network 

Realization of a stochastic 
process 

Kernel smoothing 
Decision tree 

Least squares Regression 
Weighted least squares 

Best linear predictor 
Backpropagation 

Log-likelihood 
Entropy 

 
2. METHODOLOGY 
 
During the optimization process, the model of the component to be optimized will be called for 

analysis several times, each time with different geometric parameters. So the model has to be in 
parametric form, which enables it to change the parameter whenever required. So a parametric model 
of the component has to be modeled using CAD tool which is compatible with the analysis (CAE) tool. 
Sensitivity analysis of the component was performed to find the effect of the objective function and the 
state variables (stress/deformation) on the variation of geometric parameters. The parameters which 
influence more on the state variables are alone considered for the optimization study. Inorder to 
reduce the computation cost and to have a better sampling search in the design space, design of 
experiments was performed using Orthogonal Array (OA). For the sampling points, the computer 
experiment was conducted using ANSYS package and the results are fed to Minitab software to create 
the metamodel. This metamodel was used in Genetic Algorithm (GA) coding for optimization.  

 
3. DESIGN OF EXPERIMENTS TECHNIQUES 

 
Design of Experiments includes the design of all information-gathering exercises where 

variation is present, usually under the full control of the experimenter. Often the experimenter is 
interested in the effect of some process or intervention on some objects. Design of experiments is a 
discipline that has very broad application. In the following part, we will introduce the most frequently 
used DOE techniques. 

3.1 Full-factorial Design 
A full-factorial design is one in which all combinations of all factors at all levels are evaluated. It 

is an old engineering practice to systematically evaluate a grid of points, requiring n1*n2*n3*...ni (i is 
the number of factors, n is the number of levels for factor i ) design point evaluations. This practice 
provides extensive information for accurate estimation of factor and interaction effects. However, it is 
often deemed cost-prohibitive due to the number of analyses required. 

3.2 Orthogonal Arrays 
The use of orthogonal arrays can avoid a costly full-factorial experiment in which all 

combinations of all factors at different levels are studied. A fractional factorial experiment is a certain 
fractional subset (1/2, 1/4, 1/8, etc.) of the full factorial set of experiments, carefully selected to 
maintain orthogonality (independence) among the various factors and certain interactions. While the 
use of orthogonal arrays for fractional factorial design suffers from reduced resolution in the analysis 
of results (i.e., factor effects are aliased with interaction effects as more factors are added to a given 
array), the significant reduction in the required number of experiments can often justify this loss in 

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 

 

198 



ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL 
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 1 (ISSN 1584 – 2665) 

 
 

resolution as long as some of the interaction effects are assumed negligible. In fractional factorial 
designs, the number of columns in the design matrix is less than the number necessary to represent 
every factor and all interactions of those factors. Instead, columns are “shared” by these quantities, an 
occurrence known as confounding. Confounding results in the dilemma of not being able to realize 
which quantity in a given column produced the effect on the outputs attributed to that column. In such 
a case, the designer must make an assumption as to which quantities can be considered insignificant 
(typically the highest-order interactions) so that a single contributing quantity can be identified. 

3.3 Latin Hypercube Design 
Another class of experimental design which efficiently samples large design spaces is Latin 

Hypercube sampling. With this technique, the design space for each factor is uniformly divided (the 
same number of divisions (n) for all factors). These levels are then randomly combined to specify n 

points defining the design matrix (each level of a factor is 
studied only once). For example, Figure 1 illustrates a possible 
Latin Hypercube configuration for two factors (x1, x2) in which 
five points are studied. Although not as visually obvious, this 
concept easily extends to multiple dimensions. An advantage of 
using Latin Hypercubes over Orthogonal Arrays is that more 
points and more combinations can be studied for each factor. 
The Latin Hypercube technique allows the designer total 
freedom in selecting the number of designs to run (as long as it 
is greater than the number factors). While, the configurations 
are more restrictive using the Orthogonal Arrays. A drawback to 
the Latin Hypercubes is that, in general, they are not 

reproducible since they are generated with random combinations. In addition, as the number of points 
decreases, the chances of missing some regions of the design space increases. 

 
Figure 1. Latin Hypercube design 

3.4 Central Composite Design 
Central Composite Design (CCD) is a statistically based technique in which a 2-level full-

factorial experiment is augmented with a center point and two additional points for each factor (star 
points). Thus, five levels are defined for each factor, and to study n factors using Central Composite 
Design requires 2n +2n +1 design point evaluations. The corner points are for the assessment of linear 
and 2-way interaction terms. Center points are used to detect curvature and sometime replicated in 
experimental DOE to estimate pure error. Star points are for the assessment of quadratic terms, see 
Figure 2(a). Although Central Composite Design requires a significant number of design point 
evaluations, it is a popular technique for compiling data for Response Surface Modeling due to the 
expanse of design space covered, and higher order information obtained. 

3.5 Box-Behnken Design 
Box and Behnken developed a family of efficient three-level designs for fitting second-order 

response surfaces. It exists only for 3-7 factors. Number of runs is very close to CCD for the same 
number of factors. The Box-Behnken design doesn’t have any corners and it is suitable for the situation 
when corners are not feasible (physical designs), see Figure 2(b). 

  
(a) Central Composite Design (b) Box-Behken Design 

Figure 2. Comparison of CCD design and Box-Behnken design 
 

4. APPROXIMATING METHODS 
 

Approximation concepts were introduced in structural design optimization in the late 1970s to 
do the following: 
 Reduce the number of independent design variables through design variable linking and reduced 
basis vectors concepts. 
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 Perform constraint deletion through truncation and regionalization schemes. 
 Reduce the number of computer intensive, detailed analyses (or simulation code evaluations) 
through the use of mathematical approximations of the design optimization objective and constraint 
functions. 

These approximations models can be used to reduce simulation codes or analyses that are 
computation intensive. They can also help to eliminate the computational noise for simulation codes in 
the case the outputs rapidly oscillate with gradual changes in the values of input parameters. 
Computational noise has a strong adverse effect on optimization by creating numerous local optima. 
Approximation models (Response Surface Models in particular) naturally smooth out the response 
functions, and, in many cases, help to converge to a global optimum faster. The usage of 
approximation is not restricted to optimization. It also provides an efficient means of post-
optimization or sensitivity analysis. Their value is very high for computationally expensive engineering 
methods, such as Monte Carlo Simulation, Reliability-Based Optimization, or Probabilistic Design 
Optimization. 

4.1 Response Surface Method 
Response surface method is a collection of statistical and mathematical techniques useful for 

developing, improving, and optimizing processes. In some systems based on the underlying 
engineering, chemical, or physical principles, the nature of the relationship between y and x ’s might 
be know exactly. Then a model of the form y=g(x1,x2,...,xk )+e can be written. This type of relationship 
is often called a mechanistic model. However, the more common situation would be that the 
underlying mechanism is not fully understood, and the experimenter must approximate the unknown 
function g with an appropriate empirical y = f(x1, x2,….., x3) + e. Usually the function f is a first-order 
or second-order polynomial. This empirical model is called a response surface model. The model then 
can be used in optimization studies with a very small computational expense, since evaluation only 
involves calculating the value of a polynomial for a given set of design variables. Accuracy of the model 
is highly dependent on the amount of information collected for its construction (number of exact 
analyses), shape of the exact response function being approximated (like the order of polynomial), and 
volume of the design space in which the model is constructed (the range covered by the RSM). In a 
sufficiently small volume of the design space, any smooth function can be approximated by a quadratic 
polynomial with good accuracy. For highly non-linear functions, polynomials of 3rd or 4th order can be 
used. If the model is used outside of the design space where it was constructed, its accuracy is 
impaired, and refining of the model is required. The response surface model relies on the fact that the 
set of designs on which it is based is well chosen. Randomly chosen designs may cause an inaccurate 
surface to be constructed or even prevent the ability to construct a surface at all. Because simulations 
are often time-consuming or the experiments are expensive, the overall efficiency of the design process 
relies heavily on the appropriate selection of a design set on which to base the approximations. CCD 
design, Box-Behnken design and D-optimal design are the widely used DOE methods to generate the 
design set for constructing a response surface model. 

4.2 Kriging Meta Models 
Kriging (named after the South-Afican mining engineer Krige) is an interpolation method that 

predicts unknown values. More precisely, a Kriging prediction is a weighted linear combination of all 
output values already observed. These weights depend on the distances between the new and the 
observed inputs. The closer the inputs, the bigger the weights are. Kriging models are extremely 
flexible due to the wide range of correlation functions which can be chosen for building the 
approximation model. Furthermore, depending on the choice of the correlation function, the model 
either can provide an exact interpolation of the data, or an inexact interpolation. The most popular 
DOE for Kriging is Latin Hypercube Design (LHS). LHS offers flexible design sizes n (number of 
scenarios simulated) for any value of k (number of simulation inputs). Geometrically, many classic 
designs consist of corners of k-dimensional cubes, so these designs imply simulation of extreme 
scenarios. LHS, however, has better space filling properties. 

4.3 Neural Networks 
Artificial Neural Networks (ANN) has been studied for many years in the hope of mimicking the 

human brain’s ability to solve problems that are ambiguous and require a large amount of processing. 
Human brains accomplish this data processing by utilizing massive parallelism, with millions of 
neurons working together to solve complicated problems. Similarly, ANN models consists of many 
computational elements, called “neurons” to correspond to their biological counter-parts, operating in 
parallel and connected by links with variable weights. These weights are adapted during the training 
process, most commonly through the back-propagation algorithm, by presenting the neural network 
with examples of input-output pairs exhibiting the relationship the network is attempting to learn. The 
most common applications of ANN involve approximation and classification. Approximation models 
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attempt to estimate input-output transformation functions, while classification involves using the 
known inputs to determine class membership. There is no much literature about the optimal 
experimental design for neural networks or even verification of the effectiveness of the traditional 
regression model based optimal design methods on the neural net.  
 

5. CASE STUDY 
 

The foremost step in the metamodel based optimization is the development of metamodel. 
Development of metamodel requires lot of experiments to be carried out to the train the model. 
Experiments may not be feasible in case of complex problems like our case study and in such 
situations, simulation will be useful. This method of using computer simulation for developing 
metamodel is termed as design of computer experiments and is explained in detail in the following 
chapters. 

5.1 Parametric Modelling and finite element analysis 
As explained earlier, metamodel development requires lot of 

simulations, for which parametric model of the structure being 
optimized is required. The structure considered for the metamodel 
based optimization is a roof slab of a nuclear reactor. The roof slab acts 
as a support for various components of the reactor and is shown in 
Figure 3. The main objective of the optimization is to minimize the 
total weight of the roof slab. As the model will be explored during 
analysis for various combinations of parameters, a parametric model of 
the roof slab was developed. The variables taken for parametric 
modeling are various plate thicknesses and height of the roof slab.  

The parametric model was created using the finite element 
software ANSYS. The necessary loading conditions (weight of various 
components on the roof slab) and boundary conditions are applied on the structure and a methodology 
of analyzing the structure for static loading condition was established. 

 
Figure 3. Parametric model of the 

roof slab 

5.2. Sensitivity analysis 
The next step in metamodel based optimization is to predict the decision variables for the 

roofslab through an investigation of the sensitivity of the objective function on small increments of 
these variables. The design variables considered for the sensitivity analysis are Height (H1), Top and 
Bottom plate thickness (T1), Inner shell thickness (T3), Outer shell thickness (T4), Stiffener thickness 
(T5) and IHX, PSP shell thickness (R1). Sensitivity analysis is carried out using ANSYS sweep 
optimization module and the analysis reveals that deformation is sensitive to the variations in the 
parameters H1, and T1, stress is sensitive to the variations in the parameters T1, T3, T4, T5 and R1, and 
cost of the roof slab is sensitive to the variations in the parameters T1 and T4. So each parameter is 
contributing to in different aspects and hence all the parameters are taken as design variables for the 
optimization process. Figure 4 to 7 shows the sensitivity of the objective function (cost) and the state 
variables (stress and deformation) to the variation of the design variables. 

5.3 Experimental Design 
An important issue to metamodeling is to achieve good accuracy of metamodels with a 

reasonable number of sample points. Experimental design is the sampling plan in design space. The 
type of experimental design adopted in this work was L 32 Orthogonal Array (OA), since many 
researchers have used this technique for the design of computer experiments [2, 11, 13].  Minitab 
software has been used to perform the experimental design. The factor H1 has four levels and factors 
T1, T3, T4, T5 and R1 have two levels each as given in Table 2. Table 3 shows the sample design points 
based on OA. 

  
Figure 4. Sensitivity of the cost to the variation of 

the various thicknesses 
Figure 5. Sensitivity of the maximum stress developed in 
the roof slab to the variation of the various thicknesses 
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Figure 6. Sensitivity of the maximum deformation on 

the roof slab to the variation of the various thicknesses 
Figure 7.  Sensitivity of the cost of  the roof slab to the 

variation of the roof slab height 
 

 
5.4 Metamodelling 
Metamodeling, often referred as Response 

Surface Methodology (RSM), involves (a) choosing an 
experimental design for generating data, (b) choosing 
a model to represent the data, and (c) fitting the model 
to the observed data. Detailed description of the RSM 
is given in Simpson et. al.[1]. Based on the 
experimental design, the computer experiments were 
conducted for the various combinations of factors at 
different levels using the OA experimental design. The 
metamodeling technique used in this study is 
polynomial regression and has been applied by a 
number of researchers [2,10,11,13,14] in designing 
complex engineering systems. The most widely used 
response surface approximating functions are low-
order polynomials. For significant curvature, a second 
order polynomial which includes all two-factor 
interactions can be used. A second order polynomial 
model can be expressed as: 
 

ŷ = β0 + β1x1 + β2x2 + ….+ βkxk + β12x1 x2+ ….+βk-1,kxk-1 xk+ β11x12 + β22x22 + ….+ βkkxk2        (1) 
 

The parameters of the polynomial in Equations (1) is usually determined by least squares 
regression analysis by fitting the response surface approximations to existing data. For the roof slab 
optimization problem, three metamodels are created to approximate the cost of roof slab, stress 
developed and deflection using L32 array 
computer experimentation. In order to validate the 
metamodel some random experiments ware 
conducted and compared with the finite element 
simulation of the actual model. Table 4 and Figure 
8 to 10 shows the fitness of the metamodels. 
Validated regression models of the three responses 
generated are shown below.  
 
COST = -1.78e7 + 3.31e7H1 + 9.83e7T1 + 1.24e8T3 + 1.31e9T4 + 4.71e7T5 + 1.22e8R1 +2.92e7H1T1 + 1.25e8H1T3 + 

3.50e8H1T4 + 3.71e8H1T5 + 2.92e8H1R1 + 5.56e8T1T3 - 5.56e8T1T4 - 6.11e8T1T5 - 2.22e8T1R1 - 7.22e8T3T4 
+ 2.52e5T3T5 + 1.67e8T3R1 - 4.44e8T4T5 + 1.67e8T4R1 - 1.33e9T5R1 - 9.25e6H12 - 1.30e9T12 - 1.64e9T32 - 
1.96e9T42 - 1.75e9T52 - 1.42e9R12. 

Table 2 . Various parameters considered for the 
optimization of roof slab 

Levels Factors 
1 2 3 4 

H1(m) 1.6 1.6 - - 
T1(m) 0.015 0.02 0.025 0.03 
T3(m) 0.015 0.02 0.025 0.03 
T4(m) 0.015 0.02 0.025 0.03 
T5(m) 0.015 0.02 0.025 0.03 
R1(m) 0.015 0.02 0.025 0.03 

Table 3. Experimental design sample points 
based on L-32 array 

Factors H1 T1 T3 T4 T5 R1 
1 1 1 1 1 1 
1 1 2 2 2 2 
1 1 3 3 3 3 
1 1 4 4 4 4 
1 2 1 1 2 2 
1 2 2 2 1 1 
1 2 3 3 4 4 
1 2 4 4 3 3 
1 3 1 2 3 4 
1 3 2 1 4 3 
1 3 3 4 1 2 
1 3 4 3 2 1 
1 4 1 2 4 3 
1 4 2 1 3 4 
1 4 3 4 2 1 
1 4 4 3 1 2 
2 1 1 4 1 4 
2 1 2 3 2 3 
2 1 3 2 3 2 
2 1 4 1 4 1 
2 2 1 4 2 3 
2 2 2 3 1 4 
2 2 3 2 4 1 
2 2 4 1 3 2 
2 3 1 3 3 1 
2 3 2 4 4 2 
2 3 3 1 1 3 
2 3 4 2 2 4 
2 4 1 3 4 2 
2 4 2 4 3 1 
2 4 3 1 2 4 

L
ev

el
s 

2 4 4 2 1 3 

Table 4. Fitness of metamodels 
Response 
parameter 

R-Squared 
value (%) 

R-Squared 
(Adjusted) value (%) 

Cost 96.4 96.2 
Stress 72.0 69.9 

Deformation 94.1 93.6 
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STRESS = 9.37e8- 8.77 e8H1 + 4.96e9T1 + 5.83e9T3 - 1.22e9T4 - 7.19e9T5 - 8.92e8R1 - 6.26e8H1T1 - 2.62e8H1T3 + 
4.76e8H1T4 - 1.45e8H1T5 + 5.74e8H1R1 - 1.06e11T1T3 + 1.36e11T1T4 + 3.54e10T1T5 + 4.50e10T1R1 - 
7.23e10T3T4 + 1.21e10T3T5 + 4.45e10T3R1 + 4.10e10T4T5 - 1.42 e11T4R1 - 2.33e10T5R1 + 2.95e8H12 + 
4.59e10T12 + 5.07e10T32 + 8.49e10T42 + 1.53e11T52 + 4.79 e10R12 

DEFORMATION = 0.04 - 0.037H1 + 0.027T1 - 0.037T3 - 0.11T4 - 0.077T5 - 0.071R1 -  0.089H1T1 + 0.00078H1T3 
+ 0.033H1T4 - 0.0064H1T5 + 1.77e-2H1R1 - 4.59e-1T1T3 + 1.55T1T4 + 2.02e-1T1T5 + 1.12T1R1 - 
0.22T3T4 - 1.18T3T5 + 1.17T3R1 + 1.066T4T5 - 2.71T4R1 + 0.062T5R1 + 0.011H12 + 0.682T12 +     
1.084T32 + 1.026T42 + 1.6T52 + 0.86R12 

 

  
Figure 8. Comparison of metamodel of cost of roof 

slab with simulation result 
Figure 9. Comparison of metamodel of deformation of 

roof slab with simulation result 

 
Figure 10. Comparison of metamodel of stress in roof slab with simulation result 

 
5.5. Optimization 
The objective of this optimization is to minimize the weight of the roof slab. The method of 

probabilistic search based on evolutionary algorithms was chosen for the present optimization 
problem. The real-coded genetic algorithm (RCGA) is developed for obtaining the optimal dimensions 
of the roofslab of PFBR. The code template developed by Deb [3] was used for this purpose. Certain 
modifications in the algorithm of this program were necessary to apply it for the present study. RCGA 
is developed for six input variables and two constraints. The RCGA parameters chosen are; crossover 
probability=0.8, mutation probability=0.2, number of generation=100, and the population size=60. 
Various thicknesses of the roof slab and the height of the roof slab are considered as the design 
variables for optimization. The state variables in the optimization are maximum stress and maximum 
deformation. In this study the maximum stress is the material yield strength and maximum deflection 
is the permissible axial movement of the control plug. The range of various design variables with 
respect to the design requirement are:  

 H1  –  [1600-1800] mm 
 T1  –  [15 - 30] mm 
 T3  –  [15 - 30] mm 
 T4  –  [15 - 30] mm 
 T5 – [15 - 30] mm 
 R1 – [15 - 30]mm 

The limits for the state variables are 128MPa and 4mm for maximum stress and deflection 
respectively. Optimization of the roof slab was carried out by this approach and the total volume of the 
roof slab is reduced by 14.6 % and the cost of roof slab is reduced by 46 %.Table 5. shows the design 
and state variables after optimization. The table also compares the results obtained using RCGA with 
that of ANSYS optimization module. The optimized roof slab is also checked for its design adequacy 
under static and dynamic conditions in Finite Element package ANSYS. 
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Table 5. Results of optimization process 
Optimization 

Method 
H1 
(m) 

T1 
(mm) 

T3 
(mm) 

T4 
(mm) 

T5 
(mm) 

R1 
(mm) 

COST 
(in Crores) 

Stress 
(MPa) 

Deformation 
(m) 

ANSYS 1.6 0.015 0.015 0.015 0.015 0.015 7.59 88.3 0.0036 
Optimized 
roof slab 

GA 1.6 0.015 0.015 0.015 0.015 0.015 7.58 92.4 0.0037 
Existing roof slab - 1.8 0.03 0.03 0.03 0.03 0.03 14.3 82.7 0.0024 

 
6. CONCLUSION 

 
Traditional solution methods for optimizing complex real life engineering problems can be very 

expensive and often results in sub-optimal solutions. In this paper, an approach to develop metamodel 
for complex real time problem is presented. A global optimization approach is presented to address 
expensive computational cost of large FE runs using meta-models. With the proposed strategy of 
performing computer experiments, creating metamodel and the application of evolutionary 
algorithms, this optimization methodology can easily be adopted to more complex structural 
problems.  
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