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ABSTRACT 
This work is intended to determine the critical crack concentration by static loading of homogeneous 
isotropic solids. We use results from the linear fracture mechanics and we determine the limit cracks 
concentration on the basis of the crack resistance. Thus we use the critical stress intensity factor and 
the plastic limit stress in the end of a crack as material constants describing the brittle and ductile 
failure resistance. The obtained theoretical results are discussed and plotted in 2D and 3D graphics. 
We get a theoretical ground to explain the limited values of the critical cracks’ concentration in real 
solids. 
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1. INTRODUCTION 
 

It is clear  that the well known Katchanov’s damage parameter  D,  which varies from 0 (unda-
maged solid) to 1 (total damaged solid),  can’t reach the value of  1  because of the  crack gathering. We 
propose here a simple method to determine the critical crack concentration (CCC), which is very 
important to determine the time-life of solids [1,2].   
   

2. METHOD FOR DETERMINATION OF THE CCC 
 
           The fracture mechanics gives the following equation to the rivers displacement of the end of the 

crack  in the plane case [3]  cδ
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where K  is the stress intensity factor, E  - the Young’s module and the plastic stress in the end of 

the crack. The Dugdale’s expression to the critical crack rivers displacement in the same case is also 
well known [3]  
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where 2l  is the crack length and  is the external failure stress considering the plastic effects in the 
end of the crack. 

∗σ

            Using the well known relation 
l

K
=σ concerning central crack in the traction case, on the basis 

of equations (1) and (2) one receive the next limit failure curve, which determines the unstable crack 
state [3]      
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            This limit curve is experimental approved in [4] for many different materials and stress states 

and can be applied for any required charges in 2D and 3D. In this case linσ will be determined by the 

stress intensity factor for every possible charge and geometry. 
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            The aim of this investigation is to determine the critical crack concentration in a given material 
under stress using solutions for the critical intensity factor and the pate to obtain the expression for 
the limit curve (3). 
            The expressions to the first stress intensity factor K by normal external stresses for homo-
geneous dispersed cracks whose centers form triangles with equal sides are well known [5] 

           )...47.068.01( 42 +++= λλσ lK lin                                           (4) 

Here Ll2=λ , where L  represents the distance between the crack centers. It is sufficient to stop by 
the second member of the series since 8.0≤λ .  
            We will consider now the case of collinear cracks [5,6]      
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This equation for  can be replaced by the expression [6] 8.0λ ≤

     
2
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            The crack concentration D could be defined as  D = 2l/L, thus the crack (damage) concentration 
and the parameter λ   coincide 
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            Introduce the relative intensity factors  
l

K
Krel i

i
σ

=  , where    represent the intensity factors 

from (4, 5, 6) consecutively. Thus comparing (6) with (4, 5) – figure 1, we can conclude that the 
difference between these equations is negligible for

iK

8.0≤λ  which corresponds to the limit real 
concentration case [2]. Note that the curve (6) is between the two others (5) and (4). On the other hand 
there exist respective solutions in the case of dispersed cracks whose centers form squares in the case 
of normal and tangential external stresses (concerning both stress intensity factors). All of them are 
similar and can be compared with equation (6). The real crack distribution is more complicated, but 

remains arbitrary and homogeneous. In this 
real case to determine the stress intensity 
factor we propose to use only the simple 
analytical expression (6).  
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Figure 1. Relative stress intensity factor for different 
crack distributions using eq. 5, 6 and 4   respectively 

          The critical damage concentration 

can be received by equalizing the crack 
intensity factor K and the critical crack 

intensity factor which can be 

experimentally received and which is 
determined for many materials [7]  

∗D

cK

    cKK =                                  (8) 
          Definitively on the basis of eqs (3, 6, 7, 8) 
we obtain the following expression concerning 
the critical crack concentration by arbitrary 
charge and geometry 
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          In equation (9) we have put  
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where  is the nominal failure stress ,  s  is the failure stress-plastic stress (in the top of the cracks) 
ratio and q will be called a crack resistance ratio (CRR). Equation (9) has been obtained by 

putting , which obviously should be carried out in the case of realized equality according to 
equation (8). 
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It follows from equations (9, 10) that the five parameters ∗D , ∗σ , oσ ,  and l are not 
independent. Using (9, 10) we can determine one of them knowing the other forth. Thus, the stress at 

the end of the crack 

cK

oσ  being sometimes difficult to obtain, we need to determine experimentally only 

the nominal destructive stress ∗σ  , the critical  stress intensity factor ,  the cracks length  2l  and the 
CCC. 

cK
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Figure 2. CCC as a function of the stress ratio s. 

Horizontal dotted lines –  limit values of the CCC 
Figure 3. CCC as a function of the crack 

resistance ratio q. With dashed line – the CRR 
value - q   for  polyester resin 
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Fig.4 Influence of the cracks length on the CCC.  Horizontal dotted lines  

– limit values of the CCC. Vertical dotted line - cracks lenght by CCC equal to 0.6  
in the case of polyester resin according to figure 3 

 
            

The limit curve (9) concerning the 
critical crack concentration (CCC) is plotted 
in figures 2, 3 and 4 as a function of the 
stress ratio s, the crack resistance ratio q 
and the cracks length respectively for 
polyester resin. 
            On the other hand equation (9) is a 
function of many variable parameters. We 

show bellow – figure 5 the CCC  as a 
function of the critical stress intensity 

factor  and the crack length 

respectively. This figure shows the 
influence of every of these factors on the 
critical damage concentration as 3D 
graphic.  

∗D

cK

Critical Cracks Concentration  
Figure 5.  CCC as a function of the cracks’ semi length l 

and the critical stress intensity factor  cK
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3. CONCLUSION 
            
           Now we can make the following conclusions. The influence of the geometrical and physical para-
meters above mentioned is complicated and multidirectional. A greater damage concentration can be 
received only in the case of greater crack resistance and greater ductility. Reach the limit damage 

concentration  is not possible because in this case equation (9) requires1→∗D ∞→oσ ,  

or . The investigations show [2, 8] that 

0→l

∞→cK ∗D  for many real materials is limited between 0.2 and 
0.8. 
          In this work we have obtained useful relations to determine the critical crack concentration and 
to investigate the influence of the material parameters on the crack concentration.  
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