

ERROR HANDLING AND MESSAGES
WITH APPLICATION SERVER ABAP

1. Ana Daniela CRISTEA, 2. Adela Diana BERDIE

1. NWCON Technology Consulting GmbH, GERMANY
2.University of Timisoara , Faculty of Engineering Hunedoara, ROMANIA

ABSTRACT
Application Server ABAP is an integrated part of the application platform within SAP NetWeaver. In
this paper we will present the tools and concepts we can use to develop solid ABAP based applications
that deal with the error and problem situations occurring in our programs. We catch exceptions and
describe it for the end user. We use client-side validation and server-side validation to inform the user
about the program status and exceptions occur. ABAP offers us full support to do that through
exception classes, message classes, assistance classes, a special Hook method in Web Dynpro ABAP, a
special control structure for catching exceptions and more.

1. INTRODUCTION

SAP NetWeaver is an infrastructure software that supports the integration and development of

heterogeneous system landscapes as they are typically found in companies today [1].
Application platform of the SAP NetWeaver integration platform has two stacks: ABAP stack and

Java stack or Application Server ABAP and Application Server Java with two programming interfaces
ABAP and respective Java.

Application Server ABAP (AS ABAP) offers us through ABAP language many possibilities to
handle the exceptions that occurs in our applications, offers us tools to develop robust programs. A
good user interface catches exceptions and describes for the user the errors that occur.

One of the key quality criteria for software is the robustness of a program. It should be able to
deal with the situation and should not crash [2]. In ABAP we have classical exception handling and
class based exception handling. The SAP documentation [3] recommends us to use class based

exception handling where every exception
class derives directly or indirectly from the
CX_ROOT super-class.

Tome VIII (year 2010), Fascicule 3, (ISSN 1584 – 2673) 32

To structure possible exceptions we
have three abstract exception classes that
derive from CX_ROOT super-class. Fig. 1
shows the exception classes relationship [4].

We can handle an exception in an ABAP
programme with TRY - ENDTRY control structure. Fig. 2 shows an example of catching and handling
exceptions.

Fig. 1 The tree of exception classes in ABAP

CX_ROOT

CX_STATIC_CHECK CX_DYNAMIC_CHECK CX_NO_CHECK

Fig. 2 TRY-ENDTRY structure example

ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 3 (ISSN 1584 – 2673)

The messages that we can use in ABAP language are “A” termination message, “E” error
message, “I” information message, “S” status message, “W” warning message ,” X “ exit message and
define how the ABAP runtime should process the message [5].

When an exception is raised using RAISE EXCEPTION, the runtime environment searches for a
handler. Once a handler is found, the control flow processes the code of the handler before continuing.
If no handler can be found, the program ends with a runtime error.

We can use catch CX_ROOT to catch all errors that occurs.

2. THE STUDY
2.1 WORKING WITH EXCEPTION CLASSES AND TEXTS FOR XCEPTIONS
Each exception has assigned a text that describes the exception and can be for example Online

Text Repository (OTR) text or text from a message class.
OTR is a central place for texts that offers us tools for its processing and administration. The

texts that are stored here can contain maximum 255 characters [6].
We can create our own exception classes as global classes with Class Builder or as local classes in

our programs. Some of the advantages of using class-based exception handling are [7]:
 Object-oriented concept of inheritance
 Exception classes have integration with ABAP message concept
 Exception class can hold many different types of exceptions

A. Exception class with OTR text

Fig. 3 Exception class and Function Module

When we create an exception class in ABAP
Workbench we can chose if this is with message
class or without message class.

This type of classes have attributes inherits
from the CX_ROOT super-class. From this
attributes we use very often the TEXTID attribute
and PREVIEUS attribute.

Fig. 3 shows a Function Module that access
data from a database table and use an user defined
exception class. When the user enters an id that
doesn’t exist in the database table, an eception of
type YCX_EXCEPTION_CLASS_OTRTXT is raised
and a proper error message is shown to the end
user.

Fig. 4 The structure of

YCX_EXCEPTION_CLASS_OTRTXT

Fig. 4 shows the new defined exception id and
attribute for this exception class. In the Text tab we
can find the exception id YCX_ECEPTION_TXT
that we have used in our Function Module.

B. Exception class with text from a
message class

We create an exception class
YCX_EXCEPTION_CLASS_MSGTXT with
text from a message class. In this case
exception class implements the interface
IF_T100_MESSAGE and we can use exception
texts from database Table T00.

Fig. 5 shows the defined exception class.
Before we can use this class we have to

create a Message Class and assign it to our
exception class. In Fig. 6 we presented the
Message Class YMSG_CLASS, created with
Message Maintenance SE91.

Fig. 5 Exception class with message class

Messages are stored in the database Table
T100 that has colums as: message number,
short text, language key. Fig. 7 shows the
structure of this table.

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA

33

http://help.sap.com/saphelp_nw04s/helpdata/en/9f/dbaae335c111d1829f0000e829fbfe/content.htm

ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 3 (ISSN 1584 – 2673)

Fig. 6 Message Class YMSG_CLASS

Each exception id can be mapped to a
message id from our message class. In Fig. 8
is shown a mapping example. As can be seen
when we use text from a message class we have
a restriction to maximum four placeholders. We
can assign maximum four attributes from the
exception class.

Fig. 8 Exception id mapped to message class and

message number

Fig. 7 The structure of T100 database table

Fig. 9 illustrates the way we can use our
exception class into an ABAP class that selects
data from a database table through the help of
SQL statements.

Fig. 9 ABAP class and exception class

2.2. MESSAGES, EXCEPTIONS
AND WEB DYNPRO ABAP

Web Dynpro ABAP is the SAP
Framework that uses Model View Controller
MVC paradigm in order to build reusable
multi-component web business applications.

Through a What You See Is What You
Get view editor we can simply drag and drop
the UI Elements that we need and we have fully
support to work with messages [8].

The presentation of messages in the
client is controlled by Web Dynpro Framework
and Hook method wddobeforeaction() can us
help to react to user inputs [9].

A. Exception class and
Web Dynpro ABAP

Web Dynpro ABAP offers us
support to work with exception
classes through methods of the
Message Manager.

In Fig. 10 we present the way
we can use in a Web Dynpro
application, the class defined
hereinbefore. What is more
important is the fact that we can
catch the proper exception and
show it in browser in a MessageArea
UI Element.

All the messages that are shown
with Web Dynpro ABAP are displayed
as default at the begin of the screen. In

our case we want to change this position and in this purpose we use a MessageArea UI Element. In fig.
11 we show the proper User Interface.

Fig. 10 Catch and show of the exception message

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA

34

ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 3 (ISSN 1584 – 2673)

Fig. 11 The User Interface with Web Dynpro ABAP

B. Assistance class and Web Dynpro ABAP
An assistance class is a regular ABAP class that inherits the

CL_WD_COMPONENT_ASSISTANCE. Every Web Dynpro component has assigned just an
assistance class that we can use as Model or to work with text symbols.

The class CL_WD_COMPONENT_ASSISTANCE provides central functions by which a Web
Dynpro component can access text symbols of the assistance class [10]. As advantages of using

assistance class we can specify [11]:
 Method calls of the assistance class have

more performance as calls of methods of a
Web Dynpro controller.

 Manage dynamic texts
In Fig. 12 we present the text symbols that

we have defined for a created assistance class
YCL_ASSISTANCE_CLASS_MSG.

In our assistance class we define a new

method INSERT_VALUES with which we can
insert in the database table the informations
that the user enter in the registration form.
Fig. 13 shows the method codding.

To show a message to the user when he
doesn’t enter a proper value or to inform him
that the data are successful saved (client-side
validation) we use text symbols defined in our
assistance class. When an exception occurs we
use the exception class. Fig. 14 illustrates the
way we can use the assistance class as model
in our Web Dynpro application and the way we
can catch the exceptions.

Fig. 12 Text symbols of assistance class

Fig. 13 Method of our assistance class

Fig. 15 Access of text symbols from assistance class

Fig. 14 Web Dynpro and assistance class

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA

35

ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 3 (ISSN 1584 – 2673)

Through the attribute WD_ASSIST and the method WD_COMPONENT_ASSISTANCE ~GET_
TEXT() we can access text symbols of the assistance class from our component controller, Fig. 15.

We have to specify that for
client-side validation we can use even
messages that are defined directly in
the message class but is not
recommended to involve the message
texts directly in coding. In Fig. 16 we
present the corresponding User
Interface in Web Dynpro ABAP.

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA

36

3. CONCLUSIONS

In this paper we have presented

some of the concepts to develop robust
software by ABAP programming
language. When we develop an

application we have to plan a good exception and messages handling to describe in detail the error
situation, to check the data input from the user and to show the program status. We have seen the
advantages of using the new class based exception concept of the ABAP language and some of the tools
that Web Dynpro ABAP gives us in order to simplify the message and error handling.

Fig. 16 User Interface with Web Dynpro ABAP

REFERENCES
[1] L. Heilig, S. Karch, O. Brottcher, C. Mutzig, J. Weber, R. Pfenning, SAP NetWeaver: The official

Guide, Galileo Press 2008
[2] Horst Keller, Sascha Kruger, ABAP Objects, Galileo press 2007
[3] http://help.sap.com/saphelp_nw04s/helpdata/en/a0/ff934258a5c76ae10000000a155106/fr

ameset.htm
[4] Horst Keller, The official ABAP reference, Galileo Press, 2005
[5] http://help.sap.com/saphelp_nw04s/helpdata/en/5f/8b2e16880111d194cb0000e8353423/fra

meset.htm
[6] http://help.sap.com/saphelp_nw04/helpdata/en/4a/fff13a62d1ad6de 100000

00a11405a/frameset.htm
[7] Rich Heilman, Thomas Jung, Next Generation ABAP Development, Galileo Press 2007
[8] The 14th international conference, The knowledge based organization, November 2008,

Cristea Ana Daniela, Adela Diana Berdie, Osaci Mihaela, User Interfaces with Web Dynpro
ABAP and Web Dynpro Java, “Nicolae Balcescu” land Forces Academy publishing Haus Sibiu,
2008.

[9] Ulli Hoffmann, Web Dynpro for ABAP, Galileo Press 2007
[10] http://help.sap.com/saphelp_nw04s/helpdata/en/21/ad884118aa1709e10000000a155106/fr

ameset.htm
[11] Karl-Heinz Kühnhauser, Discover ABAP, Galileo Press, 2008

ANNALS OF FACULTY ENGINEERING HUNEDOARA
– INTERNATIONAL JOURNAL OF ENGINEERING

copyright © University Politehnica Timisoara,
Faculty of Engineering Hunedoara,
5, Revolutiei, 331128, Hunedoara,

ROMANIA
http://annals.fih.upt.ro

http://help.sap.com/saphelp_nw04s/helpdata/en/a0/ff934258a5c7
http://help.sap.com/saphelp_nw04s/helpdata/en/5f/8b2e16880111d19
http://help.sap.com/saphelp_nw04/helpdata/en/4a/fff13a62d1ad6de%20100%20000
http://help.sap.com/saphelp_nw04s/helpdata/en/21/ad884118aa1709e10000000a155106/frameset.htm
http://help.sap.com/saphelp_nw04s/helpdata/en/21/ad884118aa1709e10000000a155106/frameset.htm
http://www.sap-press.de/katalog/buecher/titel/autoren/gp/titelID-1830?GalileoSession=46342061A3xqp9-9O5M#1030

	2.1 WORKING WITH EXCEPTION CLASSES AND TEXTS FOR XCEPTIONS
	2.2. MESSAGES, EXCEPTIONS AND WEB DYNPRO ABAP
	A. Exception class and Web Dynpro ABAP
	B. Assistance class and Web Dynpro ABAP

