

ASYMPTOTIC BEHAVIORS OF STOCHASTIC EVOLUTION COCYCLE

Diana STOICA

"Politehnica" University of Timisoara, Faculty of Engineering of Hunedoara, ROMANIA

Abstract:

The paper presents the properties of exponential stability for stochastic evolution semiflow and stochastic evolution cocycles. Some characterizations which generalize classics results are also provided.

Keywords:

Stochastic evolution semiflow, stochastic evolution cocycles, exponential stability

1. INTRODUCTION

The problem of existence of stochastic semiflows for semilinear stochastic evolution equation is a non-trivial one, mainly due to the well-established fact that finite-dimensional methods for constructing (even continuous) stochastic flow break down in the infinite dimensional setting of semilinear stochastic evolution equations (cf. [3], [7], [8]). For linear stochastic evolution equation with finite-dimensional noise, a stochastic semiflow (i.e. random evolution operator) was obtained in [1].

In [5], is prove the existence of perfect differentiable cocycles generated by mild solutions of a large class of semilinear stochastic evolution equations (sees) and stochastic partial differential equations (spdes).

In this article we consider the stochastic evolution cocycle over a stochastic evolution semiflow, and present the proprieties of exponential stability.

We considered (X, d) metric space and denote V and U real Hilbert spaces. Let B(V) be a Banach space of all linear and bounded maps $A: V \to V$. We denote the sets $T = \{(t, t_0) \in R^2, t \ge t_0 \ge 0\}$ and $Y = X \times V$. The mapping $P: Y \to Y$ given by P(x,v)=(x, P(x)v), $\forall (x, v) \in Y$ is an projector on Y, where P(x) is a projection on $Y_x = \{x\} \times V$, $x \in X$. Let B(X) denote its Borel σ -algebra.

Assume (Ω, F, \mathbf{P}) is a complete probability space with a normal filter $\{F_t\}_{t\geq 0}$, i.e. F_0 contains the null sets in F and $F_t = \bigcap_{s>t} F_s$, for all $t \geq 0$, and let us consider a real valued $\{F_t\}$ - Wiener process $\{W(t)\}, t \geq 0$.

Definition 1. A stochastic process $W(t) : (\Omega, F, P) \to U$ is a Wiener process if and only if $W(t) = \sum_{i=1}^{\infty} \beta_i(t) e_i$ where $\beta_i(t)$ are real Wiener process, independents, which are the mean

 $E(\beta_i(t)^2) = \lambda_i t \text{ , where } \sum_{i=1}^{\infty} \lambda_i < \infty, \ \{e_i\}, i = 1, 2, \cdots \text{ is an orthonormal system of vectors from U}.$

Definition 2. Let be X a Banach space. A stochastic evolution semiflow on X is a random field $\phi: T \times X \times \Omega \rightarrow X$ satisfying the following proprieties:

- (1) $\varphi(t, t, x, \omega) = x$, for all (t, x) from $T \times X$ and $\omega \in \Omega$;
- (2) $\varphi(t,s,\varphi(s,t_0,x,\omega),\omega) = \varphi(t,t_0,x,\omega), \quad \forall (t,s), (s,t_0) \in T, \forall x \in X \text{, and } \omega \in \Omega.$

Definition 3. A stochastic evolution cocycles on V, over an stochastic evolution semiflow $\phi: T \times X \times \Omega \rightarrow X$, is a random field $\Phi: T \times X \times \Omega \rightarrow B(V)$, with the following proprieties:

(1) $\Phi(t,t,x,\omega)=I,\,\forall(t,x)\in R_{_+}\times X$, and $\omega\in\Omega$,

(2) $\Phi(t,s,\phi(s,t_0,x,\omega),\omega)\Phi(s,t_0,x,\omega) = \Phi(t,t_0,x,\omega), \forall (t,s), (s,t_0) \in T, \forall x \in X \text{, and } \omega \in \Omega.$

Definition 4. An stochastic evolution cocycles Φ has uniformly exponential growth if exist the constants $M \ge 1$, $\lambda > 0$ such that

 $E \| \Phi(t, s, x, \omega) \|^2 \le M e^{\lambda(t-s)}, \, \forall (t, s) \in T, \, \forall x \in X \text{ and } \omega \in \Omega.$ (1)

Definition 5. The stochastic evolution cocycles Φ is called strongly measurable if for every $(s, x, \omega, v) \in T \times X \times \Omega \times V$ the mapping $t \rightarrow || \Phi(t, s, x, \omega) v ||$ is measurable on $[s, \infty)$.

Definition 6. The mapping, $C:T\times X\times V\times \Omega \to X\times V$, definite by

 $C(t, s, x, v, \omega) = (\varphi(t, s, x, \omega), \Phi(t, s, x, \omega)v),$

where Φ is a stochastic evolution cocycles over an stochastic evolution semiflow ϕ , is called stochastic skew-evolution semiflow on Y.

2. UNIFORMLY EXPONENTIALLY STABILITY

Let be $F:[0,T] \times \Omega \to H$ an stochastic process, then $E(F) = \int_{\Omega} F(\Omega) dP(\omega)$ represent the mean of stochastic process F, where P is the probability measure. If $F \in C([0,T], L^2(\Omega, H))$ then

$$\int_{0}^{T} E \| F(t) \|^{2} dt = E \int_{0}^{T} \| F(t) \|^{2} dt.$$
(3)

For an process Wiener W(t) in rapport with the filter $\{F_t\}$ we have

$$\mathbb{E}\left\|\int_{0}^{T} F(t) \, dw(t)\right\|^{2} = \mathbb{E}\int_{0}^{T} ||F(t)||^{2} \, dt \,.$$
(4)

Definition 7. The stochastic evolution cocycles Φ is said to be uniformly exponentially stable if for some positive constants $N \ge 1, \nu > 0$ one has

$$E \| \Phi(t, t_0, x, \omega) v \|^2 \le N e^{-\nu(t-s)} E \| \Phi(s, t_0, x, \omega) v \|^2,$$
for all $(t, s), (s, t_0) \in T, (x, v) \in X \times V$, and $\omega \in \Omega$.
$$(5)$$

Lemma 8. The stochastic skew-evolution semiflow $C=(\phi, \Phi)$, is uniformly exponentially stable if and only if a no decreasing function $f:[0,\infty) \to [1,\infty)$, with property $\lim_{t\to\infty} f(t) = \infty$, such that we have the relation:

$$f(t-s)E \| \Phi(t,t_0,x,\omega)v \|^2 \le E \| \Phi(s,t_0,x,\omega)v \|^2,$$
for all $(t,s),(s,t_0) \in T$, $(x,v) \in X \times V$, and for all $\omega \in \Omega$.
(6)

Proof. Necessity. If C=(ϕ , Φ), is uniformly exponentially stable, result from Definition 7 that for $f(t) = N^{-1}e^{vt}$.

Sufficiency. Let be $\,t\ge s\ge t_{_0}\ge 0\,$ and we denote t - s = [n]. Let N= f(1) > 1 and \,\,\nu = ln N . That result:

$$E \| \Phi(s, t_0, x, \omega) v \|^2 \ge f(1)E \| \Phi(s+1, t_0, x, \omega) v \|^2 \ge \dots \ge N^n E \| \Phi(s+n, t_0, x, \omega) v \|^2 \ge \\ \ge N^{n+1}E \| \Phi(t, t_0, x, \omega) v \|^2 \ge Ne^{nv}E \| \Phi(t, t_0, x, \omega) v \|^2 \ge Ne^{v(t-s)}E \| \Phi(t, t_0, x, \omega) v \|^2$$

and so

 $\mathbb{E} \| \Phi(\mathbf{s}, \mathbf{t}_0, \mathbf{x}, \omega) \mathbf{v} \|^2 \ge \mathrm{Ne}^{\mathbf{v}(\mathbf{t}-\mathbf{s})} \mathbb{E} \| \Phi(\mathbf{t}, \mathbf{t}_0, \mathbf{x}, \omega) \mathbf{v} \|^2,$

for all $(t,s), (s,t_0) \in T$, $(x,v) \in X \times V$, and for all $\omega \in \Omega$.

Thus the stochastic skew-evolution semiflow C=(ϕ , Φ), is uniformly exponentially stable. \square

(2)

Theorem 9. Let be C=(ϕ , Φ), an skew-product semiflow with uniformly exponential growth, and is strong measurable. Then C is uniformly exponentially stable if and only if $\exists M \ge 0$ a constant, such that:

$$\int_{t}^{\infty} E \left\| \Phi(\mathbf{s}, \mathbf{t}_{0}, \mathbf{x}, \boldsymbol{\omega}) \mathbf{v} \right\|^{2} \, \mathrm{d}\mathbf{s} \le M E \left\| \Phi(\mathbf{t}, \mathbf{t}_{0}, \mathbf{x}, \boldsymbol{\omega}) \mathbf{v} \right\|^{2}, \tag{7}$$

 $\text{for all } (t,t_{_0})\in T, \ \ (x,v)\in X\times V \text{ , and for all } \omega\in\Omega \,.$

Proof. Necessity. Let be an stochastic skew-evolution semiflow C=(ϕ , Φ), uniformly exponentially stable. Then, for $N \ge 1, \nu > 0$ we have from Definition 7, that

$$E || \Phi(s, t_0, x, \omega) v ||^2 \le N e^{-v(s-t)} E || \Phi(t, t_0, x, \omega) v ||^2,$$
(8)

for all $(s,t),(t,t_0) \in T$, $(x,v) \in X \times V$, and for all $\omega \in \Omega$. Then from integration of this inequality result:

$$\int_{t}^{\infty} E \|\Phi(s,t_{0},x,\omega)v\|^{2} ds \leq NE \|\Phi(t,t_{0},x,\omega)v\|^{2} \int_{t}^{\infty} e^{\nu(t-s)} ds \leq ME \|\Phi(t,t_{0},x,\omega)v\|^{2},$$

 $\mbox{for all } (t,t_{_0})\in T, \ (x,v)\in X\times V \mbox{, and } \omega\in\Omega \mbox{, where } \ M=N\nu^{^{-1}}.$

Sufficiency. For $\,t\geq t_{_0}+1$, and $\,\omega\,$ from Definition 4 we have

$$\begin{split} &\frac{1-e^{-\omega}}{\omega}E \parallel \Phi(t,t_{_0},x,\omega)v\parallel^2 \leq \int_{t_{_0}}^t e^{-\omega(t-s)}E \Big| \Big\langle v^*,\Phi(t,s,\phi(s,t_{_0},x,\omega))\Phi(s,t_{_0},x,\omega)v \Big\rangle \Big|^2 \, ds \leq \\ &\leq M' \parallel v^\bullet \parallel \int_{t_{_0}}^t E \parallel \Phi(s,t_{_0},x,\omega)v\parallel^2 \, ds \leq M'M \parallel v \parallel \parallel v^\bullet \parallel, \end{split}$$

for all $(t, t_0) \in T$, $(x, v) \in X \times V$, and $\omega \in \Omega$. So we have the relation $F \parallel \Phi(t, t_0, v_0) \parallel \leq K \parallel v_0 \parallel = \forall (t, t, v_0, v_0) \in T \times V \times \Omega$

$$\mathbb{E} \| \Phi(t, t_0, x, \omega) \mathbf{v} \| \leq \mathbf{K} \| \mathbf{v} \|, \quad \forall (t, t, x, \mathbf{v}, \omega) \in \mathbf{I} \times \mathbf{Y} \times \Omega,$$

where $K = M'(e^{\omega} + M/c)$, $c = (1 - e^{-\omega})/\omega$. Thus result that

$$(t - t_{0})E \| \Phi(t, t_{0}, x, \omega)v \|^{2} = \int_{t_{0}}^{t} E \| \Phi(t, t_{0}, x, \omega)v \|^{2} ds =$$

= $\int_{t_{0}}^{t} E \| \Phi(t, s, \phi(s, t_{0}, x, \omega), \omega)\Phi(s, t_{0}, x, \omega)v \|^{2} ds \leq$
 $\leq K \int_{t}^{t} E \| \Phi(s, t_{0}, x, \omega)v \|^{2} ds \leq KM \| v \|.$

In conclusion we obtain the relation

$$(t - t_0 + 1)E \| \Phi(t, t_0, x, \omega)v \|^2 \le K(M + 1) \| v \|,$$

 $\text{for all } (t,t_{_0})\in T, \ (x,v)\in X\times V \text{, and } \omega\in \Omega \,.$

Thus for function $f:[0,\infty) \to [1,\infty)$, with property $\lim f(t) = \infty$, definite by

$$f(t) = \frac{t+1}{K(M+1)},$$

Result from Lemma 8, that C is uniformly exponentially stable.

REFERENCES

- [1] A. Bensoussan, F. Flandoli, Stochastic inertial manifold, Stochastic Rep. 53 (1995), no. 1-2, 13– 39.
- [2] S.N. Chow, H. Leiva, Two definitions of exponential dichotomy for skew-product semiflow in Banach spaces, Proc. Amer. Math. Soc. 124 (1996), 1071–1081.
- [3] F. Flandoli, Stochastic flows for non-linear second-order parabolic SPDE, Ann. Probab. 24 (1996), no. 2, 547–558.
- [4] M. Megan, A. L. Sasu, and B. Sasu, On uniform exponential stability of linear skew-product semiflows in Banach spaces, Bulletin of the Belgian Mathematical Society - Simon Stevin, 9 (2002) 143–154.
- [5] M. Megan, C. Stoica, On Uniform Exponential Trichotomy of Evolution Operators in Banach Spaces, Integral Equations and Operator Theory, 60 (2008) 499–506.
- [6] S. E. A. Mohammed, T. Zhang, H. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial di_erential equations, Arxiv preprint math.PR/0503320, 2005 arxiv.org.
- [7] G. Da Prato, J. Zabczyc, Stochastic Equations in infinite dimensions, University Press, Cambridge, 1992.
- [8] Skorohod, A.V., Random linear operators, Riedel, 1984.
- [9] C. Stoica, M. Megan, Discrete Asymptotic Behaviors for Skew-Evolution Semiflows on Banach Spaces, arXiv: 0808.0378v2 [math.CA].
- [10] V.M. Ungureanu, Representations of mild solutions of time-varying linear stochastic equations and the exponential stability of periodic systems, Electronic Journal of Qualitative Theory of Differential Equations 4 (2004), 1–22.

ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL OF ENGINEERING copyright © University Politehnica Timisoara, Faculty of Engineering Hunedoara, 5, Revolutiei, 331128, Hunedoara, ROMANIA http://annals.fih.upt.ro