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ABSTRACT:  
The main goal of this paper is to develop a methodology for analyzing the non-axisymmetrical swirling flows with 
helical vortex breakdown by means of linear stability analysis. For the case of high Reynolds numbers the 
eigenvalue problem governing the linear stability analysis of the Batchelor vortex is investigated using a boundary 
adapted spectral collocation technique. A symmetrization is performed eliminating all geometric singularities on 
the left-hand sides of the governing equations set. The method provides a fairly accurate approximation of the 
spectrum without any scale resolution restriction. 
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1. INTRODUCTION 
 
Most of the vortex stability analyses concerned axisymmetrical vortices with axial flow [1] in 

order to explain the vortex breakdown phenomenon observed experimentally for the first time on 
delta wings [2], in pipes [3] and in cylinders with rotating ends [4]. Obviously, the axial symmetry 
hypothesis is a major simplification having the main benefit of dramatically reducing the 
computational cost [5]. On the other hand, it introduces important limitations as far as the three-
dimensionality and unsteadiness of the flow are concerned. 

The present paper focused on developing an analytical and numerical technique for analyzing 
the eigenvalue problem governing the linear stability of an inviscid swirling fluid flow under small 
perturbations. This problem is characterized by a system of ordinary differential equations with 
variable coefficients.  

In most cases, the spatially or temporal stability (classified for open flows as in [6]) under 
infinitesimal perturbations is reduced to the study of an algebraic eigenvalue problem of this type. 
The study leads to a dispersion relation connecting in fact the growth rate ω  and the axial 
wavenumber  as a consequence of the condition that nontrivial eigenvalues to exist. Most of the  
investigations [1], [7] concerned the values of these nondimensional parameters for which the vortex 
become unstable in the case of either a spatial stability or temporal stability investigation. Since the 
investigation of this aspect may imply a large amount of measurement, one must resort also to 
numerical techniques. Although a spatial stability analysis implies the investigation of a nonlinear 
eigenvalue problem this type of analysis directly provides the frequency ranges of the most unstable 
modes. In this paper we consider a more general mathematical model for swirling flow stability 
analysis, starting with the unsteady Euler equations in cylindrical coordinates. In doing so, we can 
examine both unsteady and circumferentially variable perturbations. 

k

The paper is organized as follows. The eigenvalue problem governing the linear stability analysis 
for inviscid swirling flows against normal mode perturbations is defined in Section 2. The third section 
a new radial spectral approximation is proposed and in Section 4 the method is applied for the 
Batchelor vortex case and the actual numerical procedure is presented. The main advantages of the 
proposed methods are pointed out in Section 5. 

 
2. PROBLEM FORMULATION 

 
The governing equations in the case of incompressible and inviscid flow are the Euler equations 
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The following flow fields decomposition are used: velocity vV + , pressure π+p  where 

( pV , )  is the base flow, and ( )π,v  is the perturbation considered small.  
Since the base flow obey the Euler equations (1) the evolution of such small perturbations of the 

basic flow is governed by the linearized Euler equations  

,v 0=⋅∇ π
ρ
∇−=∇⋅+∇⋅+

∂
∂ 1

)()( VvvV
t

v                         (2) 

In the linearization process the second order terms in the small perturbations were neglected. 
Assuming a steady columnar flow the velocity profile is written 

( ) ( ) ( )[ ]rWrUrV ,0,=                                      (3) 

where U  represents the axial velocity component W  the azimuthal component of the velocity both 
depending only on radius. Next, we consider the following factorization of the small perturbations 

( ) ( )[ ] [ ] ( )[ ]tmkziexp)r(P),r(H),r(iG),r(F,r,z,t,,r,z,tv ω−θ+=θπθ    (4) 
Introducing the factorization form (4) into the linearized Euler equations (2) we obtain the 

following system of first order differential equations 
0=+′++ HmGrGFrk                                  (5a) 
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where prime denotes differentiation with respect to the radius. This homogenous first order 
differential system is completed with the following boundary conditions at axis and the far field 
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Equations (5) and (6) represent an eigenvalue problem. 
 
3. BOUNDARY ADAPTED RADIAL SPECTRAL APPROXIMATION 

 
The pseudospectral - collocation method is one of the most used technique for the numerical 

investigations in hydrodynamic stability problems. Many researchers have demonstrated the 
applicability of this method with high degree of accuracy to eigenvalue problems governing the linear 
stability of  swirling flows [9-11]. 

The difference between the classical method and the modified version proposed here is given by 
the selected spaces involved in the discretization process motivated by the need to adapt the grid 
points to the singularities of the underlying solution.  

In fact the boundary conditions (6) at infinity are applied at a truncated radius distance  

selected large enough such that the numerical results do not depend on this truncated distance. 
maxr

Following [9] we define the boundary-adapted functions { } N...,k,k 1=φ  of modal type, i. e. 

each function provides one particular pattern of oscillation 

( ) ( )rTr
r

r
r kk
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with  the shifted Chebyshev polynomials on . These type of polynomials defined on the 

physical space are used in order to optimize the interpolative procedure. The choice is based on the 
condition that the values of the grid points are given by the same elementary analytic expression for 
all values of N and they did not have to be computed numerically for every N. 

*
kT ],0[ maxr

The linear transformation that mapps the standard interval [ ]1,1−∈ξ  into the physical range 

of our problem  and preserves the clustering rate of collocation nodes is defined by the 

linear transformation 
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while the inverse transformation is defined 

( ) 12
max

−=
r

r
rξ                                        (9) 

The proposed method allowed us to discard the first and last collocation nodes, expansion 
functions satisfying the boundary conditions from the construction of our modal boundary-adapted 
basis. In this way the critical singularities which occurred in evaluating terms like 1/r for the 
numerical treatment of the eigenvalue problem were eliminated. Then the solution is approximated 
with respect to this expansion set of functions,   
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A modified Chebyshev Gauss grid ( )
10 −≤≤

=
NjjξΞ  in [ ]11,−  was constructed 
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In our case the collocation nodes clustered near the boundaries diminishing the 
negative effects of the Runge phenomenon. Another aspect is that the convergence of the 
interpolant on the clustered grid towards unknown function is extremely fast. 

Each of the basis functions from (7) meet the relations 

( ) ( ) 00 max1 ==== rrr Nkk φφ , 

( ) 0≠jk rφ , Nj ..1= , 1..2 −= Nk                            (12) 

which implies that each functions  satisfy the boundary conditions (6).   PHGF ,,,
     With (10) the mathematical model takes the form 
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Let us denote by ,  given by (8), )(][ irdiagr = ir 10 −= N,...,i , [ ]
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By differentiating (10) results 
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For k = 1 we have  and rewriting (18) we have  ( ) 0*
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The shifted Chebyshev polynomials meets the recurrence relation 
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The interpolant derivative matrix D from (17) was evaluated by 
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This algorithm allows us to obtain the eigenvalue, the eigenvector, the index of the most 
unstable mode, the maximum amplitude of the most unstable mode and the critical distance where 
the perturbation is the most amplified. 

The main advantages of the proposed method consist in reducing the computational time by 

reducing the matrices order to (  and for a certain spectral parameter N we obtain an 
exponential decreasing error. 

)284 −N

 
 4. NUMERICAL RESULTS FOR BATCHELOR VORTEX 
 
The above presented method was tested on a particular benchmark model: the Batchelor or q-

vortex [7].  
The flow field is characterized by the velocity field ( ) ( ) ( )[ ]rWrUrV ,0,=  [4], 

( ) 2rearU −+= , )1()(
2re

r
q

rW −−=                                                        (24) 

where  represents the swirl number defined as the angular momentum flux divided by the axial 
momentum flux times the equivalent nozzle radius and  provides a measure of free-stream axial 
velocity. 

q
a

In [7] the numerical investigation of the two-point boundary value problem was based on a 
shooting method. The properties of the Batchelor vortex are pointed out by considering them as 
functions of the swirl ratio  and the external flow parameter . q a

The computed spectrum of the eigenvalue problem is depicted in Figure 1. Graphical 
representations of the spatial eigenfunction amplitudes of the most unstable mode are given in the 
Figure 2. For a stabilization of the Gibbs phenomenon a Lanczos type σ  factor [10] was used, 

N

k
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k

k π

π
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2
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= , Nk ≤≤1                                                               (25) 

Table 1. Convergence behaviour of the critical distance for the most unstable mode  
with ω = 0.01, a = 0, q = 0.1 and m = -3. 

N Axial wavenumber k Critical distance rc 

100 0.64887-3.7433i 0.00302 
150 0.50842-0.14243i 0.90051 
180 0.50847-0.14232i 0.92294 
250 0.50854-0.14216i 0.95451 
300 0.50857-0.14209i 0.93874 
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Figure 1. a. Spectra of the hydrodinamic eigenvalue 
problem computed at ω = 0.01, m=-3, a = 0, q = 0.1, 

N = 150. 

Figure 2.  Values of eigenfunction amplitudes of the most 
unstable mode.  ω = 0.01, m = -3,  a = 0, q = 0.1, N = 150, 

k = 0.50842-0.14243i 
 

5. CONCLUSION 
 
In this paper we developed a spectral numerical procedure to investigate the spatial stability of 

a swirling flow subject to infinitesimal perturbations. Using a spectral collocation technique our 
numerical procedures directly provided relevant information on perturbation amplitude for stable or 
unstable induced modes, the maximum amplitude of the most unstable mode and the critical distance 
where the perturbation is the most amplified.     

The accuracy of the methods is assessed underlying the necessity for the construction of a 
certain class of orthogonal expansions functions satisfying the boundary conditions. The key issue was 
the choice of the grid and the choice of the modal trial basis, the scheme based on shifted Chebyshev 
polynomials provided good results.  
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