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ABSTRACT 
Analysis for the propagation of plane harmonic waves in an infinite homogeneous orthotropic plate of 
finite thickness times is studied. The frequency equations corresponding to the symmetric 
(extensional) and antisymmetric (flexural) wave modes of vibration are obtained and discussed. 
Special cases of the frequency equations are also discussed. Numerical solution of the frequency 
equations for transversely isotropic plate is carried out, and the dispersion curves for the first few 
lower modes are presented for a transversely isotropic plate. The wave motions namely, longitudinal 
and transverse of the medium are found dispersive and coupled with each other due to the anisotropic 
effects. The phase velocity of the waves is getting modified due to the anisotropic effects. Relevant 
results of previous investigations are deduced as special cases.  
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1. INTRODUCTION 
 

Elastic waves are appropriate to measure elastic properties as well as flaws of solid specimens 
and have received much interest; such as in the use of elastic waves in nondestructive evaluation of 
concrete structures, laser generated ultrasonic waves, the determination of anisotropic elastic 
constants of composite materials, recovery of the bonding properties and/or thickness of bonded 
structures.  The proposed high-speed civil transport and advanced aerospace composite materials are 
required to respond well to the mechanical loading. The materials used in the design of such structures 
(future supersonic and hypersonic flight and launch vehicles), where high strength to weight ratios in 
structural components is an important factor, are likely to experience enormous challenges during 
their flight missions, so they need to perform well under these strenuous conditions for thousands of 
flight hours. Thus, the increasing use of such advanced high strength, high modulus composites 
materials, laminated and fiber-reinforced structures must go careful inspection to sort out 
manufacturing errors and in-service degradation and defect formation. Among the various techniques 
available, Lamb waves offer a convenient method of evaluating these composite materials. Study of 
wave propagation and vibration in infinite plates, half-spaces and laminates is an area of considerable 
recent research activity as these structural components are subjected to various transient stresses 
conditions. The aspect of wave phenomenon is, also of great importance in such materials and study of 
their behavior will prove to be a good contribution and useful in practical applications.  

Based upon Rayleigh’s Mathematical formulation, Lamb [1] extensively investigated the 
properties of these waves and today they are known as Rayleigh-Lamb waves. Compared to the 
extensive literature on the elastic waves in infinite anisotropic media; relatively little attention has 
been given to elastic waves in anisotropic plates. Although a entire review of the extensive literature on 
this subject cannot be undertaken, a number of salient contributions should be mentioned. 
Propagation of elastic waves in anisotropic homogeneous plate has been studied in detail by authors 
[2-8]. These studies provide an interesting picture of the rich dispersion characteristic of these guided 
waves. Several others authors [9-13] have studied free Lamb waves. Wave propagation in anisotropic  
composite media has also been studied by Nayfeh and Chementi [14]  and  Yan Li & R. B Thomson 
[15]. 

In this article, problem of plane harmonic thermoelastic waves in an infinite homogeneous 
orthotropic plate of finite thickness is studied. The frequency equations corresponding to the 
symmetric (extensional) and antisymmetric (flexural) wave modes of vibration are obtained and 
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discussed. Special cases of the frequency equations are also discussed. Numerical solution of the 
frequency equations is carried out for a transversely isotropic plate, and the dispersion curves are 
presented. The motions namely, longitudinal and transverse of the medium are found dispersive and 
coupled with each other due to the anisotropic effects. The phase velocity of the waves is get modified 
due to the anisotropic effects .Relevant results of previous investigations are deduced as special cases. 
 

2.  FORMULATION 
 

Consider   a   set    of   Cartesian    coordinate   system 1 2 3( , , )ix x x x=  in such a manner that 

3x - axis is normal to the layering. The basic field equations of motion for an infinite generally 

anisotropic medium are 

                            (2.1) ijij u ,, &&ρσ =

ij ijkl klc eσ = ,     i, j, k, l = 1,2, 3,                    (2.2) 

where ρ  is the density, t is the time, u is the displacement in the direction,  and  are the 

stress and strain tensor respectively; and the fourth order tensor of the elasticity  satisfies the 

(Green) symmetry conditions:  

i xi σ ij

C ijk

eij

l

ijklc  =  =  =                                                     (2.3) klijc ijlkc jiklc
Strain-displacement relation  

2,, )+(= ijjiij uue .                                                                   (2.4) 

The stresses and displacements at the surface of the plate are: 

3 13 23 3( ) ( , , )S x 3σ σ σ= ,                                                     (2.5) 

3 1 2( ) ( , , )D x u u u3=  ,                                                                  (2.6) 

and the bar means the amplitudes of the displacement; temperature, stress and the temperature 
gradient are the function of x3 only. 

The boundary conditions on the plate surfaces are: 
 0=− )( dS ,                                                           (2.7) 

 0=)(dS ,                                                                         (2.8) 

where 0 is a zero vector. 
When specializing the equations (2.1)-(2.4) for orthotropic the governing equations are  

12,2661233,15522,16611,111 )()( uccucucuc ++++ 13 55 3,13 1( )c c u uρ+ + = &&              (2.9) 

)()( 33,24422,22211,26612,16612 ucucucucc +++ + 23 44 3,23 2( )c c u uρ+ + = &&             (2.10) 

11,35523,2442313,15513 )()( ucuccucc ++++ 44 3,22 33 3,33 3c u c u uρ+ + = &&                  (2.11) 

 
3.  ANALYSIS 

 

Having identified the plane of incidence to be the 31 xx − plane, then the solution for 

displacements and temperature for an angle of incidence θ , is proposed: 

                                1 3exp[ (sin  )]j ju U i x x ctξ θ α= + − , i = −1 ,   j  = 1, 2, 3  (3.1) 

where ξ is the wave number, c is the phase velocity (= ω / ξ), ω is the circular frequency, α is still an 

unknown parameters,  are the constants related to the amplitudes of displacement u1,,  u2,  u3 . 

Although solutions (3.1) are explicitly independent of x2, an implicit dependence is contained in the 
transformation and the transverse displacement component u2   is non-vanishing in equation (3.1). 

U j

Substituting (3.1) in equations (2.9)-(2.11) leads to the coupled equations, the choice of solutions leads 
to four coupled equations  

0=nmn UM )(α                            m,  n = 1, 2, 3                                      (3.2) 

where  

M F c11 11 2
2= + α ,  M F13 13= α ,  ,             (3.3) M F c22 22 6

2= + α M F c33 33 1
2= + α
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F11
2 2= -sin θ ζ , F c13 7= sinθ , , ,             (3.4)               F c22 3

2 2= -sin θ ζ F c33 2
2= sin θ ζ 2-                

c
c
c1

33

11
= , 

11

55
2 c

cc = , c
c
c3

66

11
= ,  c

c
c6

44

11
= , c

c c
c7

13 55

11
=

+
,ζ

ρ2
2

11
=

c
c

 

The system of equations (3.2) has a non-trivial solution if the determinant of the coefficients of 
U1, U2 and U3 vanishes, which yields an algebraic equation relating α to c. We obtain a biquadratic 
polynomial equation in α, which can be written as 

4 2
1 2 1 2 0c c A Aα α+ + = ,                                                             (3.5) 

and    

022
63 =−+ ζαcc ,                                                                    (3.6) 

where  
2

1 11 1 2 33 13

2 11 33

A F c c F F
A F F

= + −
=

                                      (3.8) 

Notice that roots of (3.6) correspond to the SH motion, gives a purely transverse wave, which is 
not affected by the temperature. This wave propagates without dispersion or damping. Equation (3.6) 
corresponds to the sagittal plane waves, and for the motion in this plane, each αl  (l = 1, 2 ,3, 4) the 
displacements, stresses amplitudes are 

2
11 2

3( )
13

( )l
l

l

F c
q

F
α

α
+

= −                                       (3.9) 

33( ) 7 2 1 3( )[ {( )sin }lr i c c c ql lξ θ α= − + ,                                                (3.10) 

)]sin([ )(32)(13 θαξ lll qcir += ,                                                            (3.11) 

For the SH type wave, one now has 
r r c23 8 23 7 6 7( ) ( )= - = α .                                                               (3.12) 

As the equation (3.5) admits solutions for α, having the properties ,122 −−= ll αα  (l = 1, 2) 

incorporating this property into Eqs.  (3.9) we have.  
  )1(23)(23 −−= ll qq ,                                (3.13) 

 
4. DISPERSION RELATIONS 
 

If the roots of quadratic equation (3.5) are denoted by 2
1 ,α and 2

2α  then solutions of and  

are then being obtainable as linear combinations of four linear independent solutions corresponding 

to, with property 

1 ,u 3u

α l ( 1, 2 . . . .4 )l = ,12 ll αα −=−  (l = 1, 2). The equations of motion may be used 
to establish the formal solution for the displacement as 

4

1 3 3( ) 3 1
1

( , ) ( 1, ) exp( )exp[ ( sin( ) )]l l l
l

u u q A x x ctιξα ιξ θ
=

= −∑ ,             (4.1) 

Using  the properties ,12 ll αα −=−  l = 1, 2 ,   we have  

 1 3 1 3 1( , ) ( , ) exp[ ( sin( ) )]u u u u x ctιξ θ= −                                      (4.2) 

where 

                                                                   
2

(2 1) (2 )
1

1
( )l l

l l
l

u U E U E− + −

=

= +∑                     (4.3) 

         
2

(2 1) (2 )
3 3( )

1
( )l l

l l
l

u q U E U El
− + −

=

= −∑                    (4.4) 

where in   
di

l
leE ξα=

+

 and  (l = 1, 2),          (4.5) di
l

leE ξα−=
−1
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and   (i = 1, 2, 3, 4) are disposal constants. The disposal constants for  are not independent 

as they are linked through the equations of motion and heat conduction.  Here  are the 

displacements ratios defined in (3.9). 

,)(iU ,)(iU

)(3 lq

 Combining Eqs.(4.1)- (4.4) and (3.10) - (3.11) with the stress-strain relations and using 
superposition, we write stresses as 

33 13 33 13 1 2( ,  ) ( , ) exp[ ( )]x x ctσ σ σ σ ιξ α= + − ,                          (4.6) 

with 
2

(2 1) (2 )
33 33( )

1
( l l

l l
l

r U E U Eσ )l
− + −

=

= +∑          (4.7) 

2
(2 1) (2 )

13 13( )
1

( l l
l l

l
r U E U Eσ )l

− + −

=

= +∑          (4.8) 

where   ,  and    ,   l= 1, 2, 3, 4. are defined  in    (3.10)-(3.11). Incorporating this 

property

)(33 lr

12l

)(13 lr
,lαα −=− into equations (3.10) and (3.11), we conclude the further restrictions. 

   )133(2)33(2 −= ll rr ,         (4.12) 

)113(2)13(2 −−= ll rr            l = 1, 3        (4.13)                        

The dispersion relation associated with the plate is now derived from equations (4.6) by applying 
traction free boundaries boundary conditions (2.7) and (2.8) at the upper and lower faces dx ±=3  of 
the plate, thus  

 
2

(2 1) (2 )
33( )

1
( l li d i dl l

l
l

r U e U eξα ξα−−

=

) 0+ =∑                                   (4.15) 

2
(2 1) (2 )

33( )
1

( l li d i dl l
l

l
r U e U eξα ξα−−

=

) 0+ =∑                                            (4.16) 

0)( )2(
3

1

)12(
)(13 =− −

=

−∑ dil

l

dil
l

ll eUeUr ξαξα                                    (4.17) 

2
(2 1) (2 )

13( )
1

( l li d i dl l
l

l
r U e U eξα ξα−−

=

) 0− =∑                                   (4.18) 

On further simplifying equations (4.15)- (4.18), we have 

       
2

33( )
1

(l l l l l
l

r U C iU S+ −

=

) 0+ =∑ % %                                                         (4.19) 

2

33( )
1

( )l l l l l
l

r U C iU S+ −

=

0− =∑ % %                                            (4.20) 

                                                              
2

13( )
1

(l l l l l
l

r U C iU S− +

=

) 0+ =∑ % %                                                           (4.21) 

2

13( )
1

(l l l l l
l

r U C iU S− +

=

) 0− =∑ % %                                                          (4.22) 

The symmetry of the plate allows us to simplify the system of four homogeneous equations in 
four unknowns into two systems of two equations in two unknowns, which on employing straight 
forward algebraic manipulations, yield the following relations associated with the plate 

2

33( )
1

0l l l
l

r U C+
=

=∑ %          (4.23) 

2

13( )
1

0l l l
l

r U S+
=

=∑ %         (4.24) 

and  
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2

33( )
1

0l l l
l

r U S−
=

=∑ %          (4.25)  

2

13( )
1

0l l l
l

r U C−
=

=∑ %           (4.26) 

within which  

)cos( dC ll ξα= , sin( )l lS dξα=  

     )2()12()2()12( ~ ,~ ll
l

ll
l UUUUUU −=+= −−−+             (4.27) 

The condition that the system of equations (4.23)-(4.24) and (4.25)-(4.26) admit a non-trivial 
solution give rise to the dispersion relations associated symmetric with and antisymmetric waves 
respectively. 
 

5. ANTISYMMETRIC WAVES 
 
The dispersion relation associated with flexural waves equation is obtained by taking 

 thus ,)2()12( ll UU =−
1 ,u  and 3u  have the form 

2
( 2 )

1
1

2 l
l

l
u U C

=

= ∑ ,  
2

( 2 )
3 3( )

1
2 l

l l
l

u i q U
=

= ∑ S ,                                     (5.1) 

and therefore require that system of equation (4.25)- (4.26) admit a non-trivial solution provided the 
determinant of coefficients associated with these equations vanishes, which after a little and straight 
forward algebraic manipulation, may cast in the form  

 33 (1) 1 3 ( 2 ) 1 33 ( 2 ) 13 (1) 2 0r r r rΓ + Γ =                                      (5.2) 

 where  

)(tan ll γα=Γ  and d
c
ωγ ξ= =                                                            (5.3) 

 
6.  SYMMETRIC WAVES  
 
The dispersion relation associated with symmetric waves equation is obtained by taking 

 and determinant of coefficients of (4.23)- (4.24) yields the dispersion relation 
associated with extensional waves, namely 

,)2()12( ll UU −=−

33 (1) 13 ( 2 ) 2 3 33( 2 ) 13 (1) 1 3 0r r r rΓ Γ + Γ Γ =                       (6.1) 

thus 1u , and 3u  have the form 
2

( 2 )
1

1

2 l
l

l

u i U S
=

= − ∑ ,  
2

(2 )
3 3( )

1

2 l
l l

l

u q U
=

= − ∑ C ,                                      (6.2) 

21 , GG  and  are defined in (5.3) lΓ
 

7. SPECIAL CASES 
 
Cubic and Isotropic Materials: 
Results for materials possessing transverse isotropy, cubic symmetry and isotropic case, can be 

easily obtained from equations (5.2) and (6.1) by imposing the additional conditions on the constants, 
namely  

 ,2  ,  ,  , 442322665512132233 ccccccccc =−===                  (7.5) 

and  for cubic symmetry 

   ,  , 665544231213332211 ccccccccc ======   (cubic)                              (7.6) 

Finally, for the isotropic case 

11 22 33 13 12 23 44 55 662 ,   ,    c c c c c c c c cλ μ λ= = = + = = = = = = μ  (isotropic)       (7.7)  
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8. NUMERICAL RESULTS AND DISCUSSION 
 

Numerical illustrations of the analytical characteristic equations are presented in the form of 
dispersion curves. These curves are obtained by keeping ξ (wave number) real and letting c be 
complex. Then the phase velocity is defined as Re(c), and the imaginary part of c is measure the 
damping of the waves. One can also let c be real and let ξ  be complex. In this case the wave c 
corresponding to Re(ξ), and Im(ξ) is a measure of the attenuation of the wave. To find the solutions of 
a characteristic equation, Mathcad software is used to solve it as an analytic function by considering 
material, given with the following properties  

3851.01 =c , , 2365.02 =c 5485.03 =c , c11 = 1.628 × 1011 Nm-2,  ρ = 7.14 103 kmg-3, ×

In figures 1 and 2, dispersion curves corresponding to few lower modes of antisymmetric and 
symmetric wave modes in the forms of variations of phase velocity (dimensionless) with wave number 

(dimensionless) are plotted at 2πθ = .  It is obvious that the largest value corresponds to the quasi-

longitudinal mode. Higher modes appear in both the cases (antisymmetric and symmetric) with ξ 
increases. One of these seems to be associated with rapid change in the slope of the mode. Lower 
modes of antisymmetric and symmetric are found more influenced at low values of wave number.  
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Dispersion Curves (Antisymmetric Modes)Fig.1.   Phase velocity Vs wavenumber antisymmetric wave modes for transversely isotropic plate  
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Dispersion Curves (Symmetric Modes)  Fig.2.   Phase velocity Vs wavenumber symmetric wave modes for transversely isotropic plate  
Dispersion curves in figure 1 correspond to antisymmetric wave modes and figure 2, to 

symmetric wave modes. The phase velocity of the lowest antisymmetric and symmetric mode is 
observed to increase from zero value at zero wave number limits, and tends towards Rayleigh velocity 
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asymptotically with an increase in wave number. The phase velocities of higher modes of propagation, 
antisymmetric and symmetric, attain quite large values at vanishing wave number. 
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Dispersion Curves (Antisymmetric Modes)Fig.3.   Amplitude Vs wavenumber antisymmetric wave modes for transversely isotropic plate  

0 0.6 1.2 1.8 2.4 3

0.6

1.2

1.8

2.4

3

Wavenumber (Non-dimensional)

A
m

pl
itu

de
  (

N
on

-d
im

en
si

on
al

)

Dispersion Curves (Symmetric Modes)  Fig.4.   Amplitude Vs wavenumber symmetric waves for transversely isotropic plate   
Lowest antisymmetric modes have non zero and the lowest symmetric modes have zero velocity 

at vanishing wave numbers, but the phase velocity of these modes also become asymptotically close to 
the surface wave velocity with increasing value of the wave number. The behavior of higher modes of 
propagation is observed to be similar to other cases. In figures 3 and 4 depict the variation attenuation 
of the few antisymmetric and symmetric lower wave modes. It is again observed that at zero wave 
number limits attenuation is high and it decrease with increasing value of the wave number.  
 

9. CONCLUSIONS 
 

Analysis for the propagation of plane harmonic waves in an infinite homogeneous orthotropic 
plate of finite thickness times is studied .The horizontally polarized SH wave  (3.7) gets decoupled from 
the rest of motion and propagates without dispersion or damping on the same plate. Waves namely, 
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quasi-longitudinal and quasi-transverse are found coupled with each other due to the anisotropic 
effects. The phase velocity of the waves gets modified due to the anisotropic effects. The dispersion 
characteristics for antisymmetric and symmetric wave’s modes have been taken into consideration. 
Phase velocity of these modes also become asymptotically close to the surface wave velocity with 
increasing value of the wave number. It is also accomplished that attenuation is high at zero wave 
number limits and it decrease with increasing value of the wave number 
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