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Abstract  
The paper reports on an investigation into the various aspects of closed die cold forging of polygonal powder 
preforms, which have been compacted and sintered from atomized powder. It is found that for certain 
dimensional ratios of the preform the die pressure is minimum. An attempt has been made for the determination 
of the die pressures developed for given geometries of the disc during the closed die forging of polygonal powder 
preform by using an upper bound approach. Uniform frictional stresses are assumed on top and bottom interfaces 
and along the interfaces on sides. The solution can be extended to closed die forging of any polygonal shape. The 
results of hexagonal shape is taken for illustration and results so obtained are discussed critically to illustrate the 
interaction of various process parameters involved and are presented graphically.  
Keywords:  Closed die forging, sintering, preform, interfacial friction law. 

 
 

1. INTRODUCTION 
 
During the last few years metal-powder components have assumed an important position in 

industry, as they are being used successfully in a wide range of applications. Both the mechanical and 
the metallurgical properties of the metal powder components compare favorably with those of wrought 
materials [1]. Bulk processing of metal powder preforms is a convenient method of reducing or 
eliminating the porosity from the conventional powder metallurgy products. Process is attractive 
because it avoids large number of operations, high scrap losses and high-energy consumption 
associated with the conventional manufacturing processes such as casting, machining etc. In this new 
technology sintered porous powder preforms are used as starting materials in metal forming 
processes. Metal powder products manufactured by this new technology are comparable and in some 
cases even superior to those of cast and wrought products. 

Because of constraints on sides the flow pattern in the closed die forging is quite different in the 
earlier papers [2-4]. It is important to use sufficient metal in the forging blank so that the die-cavity is 
completely filled by the metal powder preform. It is difficult to put the exact amount of material in the 
die-cavity. In this paper the load is calculated when the die is nearly full, because the load is maximum 
at complete filling of the die. At the point of complete filling the load can be infinite.  

Although a considerable amount of work has been reported recently as the various technological 
aspects of the industrial processing of metal-powder preforms [5-7], no systematic attempt has been 
made so far to study the processing load and deformation characteristics during forging of polygonal 
disc in a closed die. It is expected that the present work will be of great importance for the assessment 
of die load during the forging of metal powder preforms. 

 
2. INTERFACIAL FRICTION LAW 
 
In an investigation of the plastic deformation of metal-powder preforms, it is evident that with 

the application of compressive hydrostatic stress the pores will close and the relative density will 
increase, whereas the application of tensile hydrostatic stress the pores will grow and the relative 
density will decrease. The density distribution also does not seem to be uniform throughout, being 
high in the central region and low at the edges. The density distribution will be more uniform for 
smaller coefficient of friction and for a greater initial relative density [8]. 

Friction condition between deforming tool and work piece in metal forming are of the greatest 
importance concerning a number of factors such as force and made of deformation, properties of the 
finished specimen and resulting surface roughness. During the sinter forging process it is very 
important to keep special consideration on the interfacial friction, as this will determine the success or 
failure of the operation. The relative velocity between the work piece material and the die surface, 
together with high interfacial pressure and or deformation modes, create a condition of composite 
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friction which is due to adhesion and sliding [9]. The pattern of the metal flow during the forging of a 
metal powder preform is such that there exists two zones, an inner one where no relative movement 
between work piece and die occurs (the sticking zone) and an outer zone where sliding occurs. 
Therefore, the appropriate friction laws for particular condition is: 

[ ]φρμτ
00

+= p
                      

                                                 (1) 

where ι is shear stress and μ is the coefficient of friction. The first term μp being due to sliding and 
second term μρ0φ0 being due to adhesion, which later arises from change of the relative density of the 
preform during the process. 

 
3. PLASTIC DEFORMATION OF SINTERED PREFORM 

 
In an investigation of the plastic deformation of sintered deformation of sintered metal powder 

preforms, it is clear that change in volume occurs due to porosity. A preform with a high relative 
density yields at a relative high stress whereas a low relative density preform yields at a relatively low 
stress. Even hydrostatic stress can cause the sintered metal powder preforms to yield, as the yield 
surface is closed on the hydrostatic stress axis. Tabata, Masaki and Abe [10] proposed the following 
yield criterion for porous metal powder preforms: 
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where ρ = relative density of the preform, k = constant equal to 2 in yield criterion, J = Second 

invariant of deviatoric stress, η = Constant and a function of ρ only and σm = Hydrostatic stress. 

'

2

Figure (1) shows that the yield surface for a porous 
metal powder preform given by the above equation 
consists of two cones, indicates the height of the cones 
increasing with increasing ρ. When ρ = 1, i.e. a pore-free 
metal, the cone becomes a cylinder and the equation 
reduces to the Von Mises yield criterion.  

The negative sign is taken for 0≤σ m
 and the 

positive sign is taken for 0>σ m

(154.0 −

. The values of η and k 

were determined experimentally from simple 
compression and tension test of sintered copper-powder 
preforms [10] as  for  ) 2.1ρη = 0≤σ m
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 and k=2. For the axisymmetric condition the yield criterion reduces to 
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 (Appendix A). whilst for the axisymmetric condition the compactibility 
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2ε  (Appendix B) where t1 and t2 are the instantaneous thickness at 

subsequent reduction of the preform. 
 

4. VELOCITY FIELD & STRAIN RATE 
4.1 Velocity Field 
By drawing normal to the sides of hexagon from in-centre, 

the disc is divided into six regions, which are symmetrical as far 
as flow is concerned. In the region GAHO (Figure 2) and so also 
in other five regions, we take that during compression the 
horizontal component of velocity of all particles is directed 
towards the corner. Taking the corner as the origin of cylindrical 
coordinates the velocity components Uθ and Uz are given as 
below: 

0=U θ
                                 (3) 
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U
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Figure (1) Yield surface for porous metal 

powder preform 

 
Figure 2. The hexagonal shaped disc 

with thickness t and side 2R0 
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In the deformation of powder preform the volume constancy has not been assumed. During the 
forging of powder preform, the pores get closer and continuously volume changing occurs. So in this 
case, mass constancy of the preform is to be assumed and thus the normal-strain components must 
satisfy the following compressibility equation for porous materials [11]: 
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From the mass continuity of material flow it is easily inferred that the rate of flow across section 
QR (Figure 1) towards the apex A is equal to the rate at which the material is compressed over the area 
QRTS. The area T’TP and S’SP being equal, (S’T’) is arc with centre at A) we may take the rate of 
compression over area QRT’S’ instead of area QRTS to simplify the analysis without any error. Area of 
the element QRTS is given by 
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where r = radius of the generic point from origin at the center, R0 = Half the side of a hexagonal disc 
Equating the mass flow across the section QR to the rate of pressing over the area QRT’S’, 

(considering constant mass flow) we can get: 
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The velocity field given by (3), (4) and (7) must satisfy the boundary conditions: Ur = 0  at  r = R0/cosθ. 
4.2 Strain Rate 
At the top surface UZ = -U = velocity of ram. On the side surface the flow is only along the 

surface towards the respective corner (apex). The strain rate field is obtained as: 
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The above strain rates satisfy the compressibility equation (5) for powder preform. 
 

5. DIE LOAD 

For plastic deformation of a metal powder the external power supplied by the platens is given 

as:                                                                                                                   (12) 

∗
J

WWWW tafiJ +++=
∗

The first term on the right hand side denotes the rate of internal energy dissipation Wi, the 
second term denotes the frictional shear energy losses Wf, the third term denotes the energy 
dissipation due to inertia forces Wa, and the last term covers power supplied by predetermined body 
tractions Wt. In this case forces due to inertia is negligibly small and no external surface traction is 

stipulated. Therefore,  Wa = Wt = 0. Now the external power ( ) supplied by the press for entire 

hexagonal shape through the platen is =Wi+Wf1+Wf2;         (13) 
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Where N = number of sides in a polygon, Wf1 is the rate of energy dissipation at the bottom and top of 
the preform and Wf2 is the rate of energy dissipation at the N flat faces of the preform. 

5.1 Rate of Dissipation of Deformation Energy (Wi) 
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Simplification of yield criterion for axisymmetric condition gives:  
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After putting the value of strain rates from equations (8) - (11) into (14), we get (for all N- faces),  
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Lower limit for r is taken as r0 (corner radius of the die between side surface) = 0.1 to facilitate the 
calculations. It is verified that there is very little difference in the value of Wi for r0 = 0.1 to r0 = 0.75. 
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5.2 Frictional Dissipation on the Bottom & Top Surfaces (Wf1) 
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For hexagonal shape: ( ) ( )
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5.3 Frictional Dissipation at the Six Flat Surfaces (Wf2) 
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6. RESULTS AND DISCUSSION 
 

For the solution for equation (19) we have to make two deviations. First is to take the lower limit 
for r, the generic radius, as equal to 0.1 instead of zero. This is done to facilitate the calculation of Wi. If 
we take r equal to zero then log (0) becomes minus infinity. This lower limit for r does not impair the 
solution of the problem, as there is little difference in the value of Wi when we take lower limit equal to 
0.25, 0.5 and 0.75, particularly for the conditions of lubrication prevailing in actual processing. The 
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second deviation is that the curve made by corner radius is concave if we look from the center of the 
hexagon but since we have taken the corner as origin for the study of flow the curve is convex. Again 
there is negligibly small difference from the actual case (as the preform does not completely fill up the 
corners). A certain radius is always there near the corners of the hexagonal disc. 
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The relative forging pressure for different value of 

initial relative density shows a minima and hence there 
is an optimum value of D/t (Figure 3). The minima is 
clearly observed at higher initial relative density of the 
preform. This value is of course different conditions of 
lubrication (Figure 4), i.e. they depend upon the 
coefficient of factors, μ. The relative forging pressure 
increases with percentage reduction in height of 
preform (Figure 4). Again, it increases with increasing 
value of D/t (Figure 6). The relative density of the 
preform increases with the forging pressure and it is 
asymptotic (Figure 7), i.e. nearly equal to 1. It is 
observed that the relative density of the preform 
increases sharply during initial phase of loading. It is 
due to the fact that initially large amount of load is 
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consumed in compaction and then after gaining sufficient relative density, it is deformed and gives a 
uniform proportionate curve. Again from figure (8), the relative average pressure increases with as 
number of sides increases in a polygon. Also from figure (9), the relative average pressure increases as 
the number of sides in a polygon increases. 

 
 7. CONCLUSION 
 
During forging of metal powder preforms through closed dies, it is seen that compaction and 

compression both take place simultaneously. Initially the closing of pores dominates the compression 
process. The larger amount of applied load is utilized in densification and lesser amount is consumed 
for compression. The density of the preform increases with an increase in the forging load. If we can 
decrease the value of D the side of the hexagonal nut, we will be saving on material as well as forging 
cost. The above determined observations will be helpful to designing the product of hexagonal shape 
i.e. mainly hexagonal nuts. If we can decrease the value of D the side of the hexagonal nut, we will be 
saving on material as well as forging cost. Since the nuts are used in large quantities the saving may 
come to huge amounts. Similarly, certainly it will give the guidelines for developing the new sintered 
products of other shapes also. These results can be expanded for other shapes. This solution can be 
also expanded with minor modification to the problem of forging of bolts also. 
Appendix A. Writing the second invariant of deviatoric stress and hydrostatic stress in terms of principal 
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σ η

η
η 2

0

1 21

1

21 +
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+
+

=

k

  (A-3) 

Appendix B. According to Tabata, Masaki and Abe [10] the principal strain increments are given as 
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⎟

⎠
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⎝
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= ηλ σσε
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i
dd '

32
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The volumetric strain increment is given as  

ληεεεε ddddd
V

.3
321

±=++= [ ]212

13

2

32

2

21
)()()(2 εεεεεεη dddddd −+−+−±=  (B-3) 

For axisymmetrical compression: σσσσ θ
===

r31
and  σσ θ

=
2

   (B-4) 

Hence,  εε θ
λη ddd

r
=⎥⎦

⎤
⎢⎣
⎡ −=
2

1
 and ( ) ληε dd

Z
+−= 1 (B-5). Putting the values from (B-4) and (B-5) into (B-3) 

(considering the negative sign): εεεε η
Z

dd 2+η
rZr

dd 2−=+2   (B-6) 

Rearranging leads to ( )
( ) εε η
η

Zr
dd

+
−

=
12

12 . Considering 
t

dtd Z =ε  and putting it into (B-7):  
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r η
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=
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upon integrating, ( )
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η
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