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ABSTRACT: An engineering method has been developed for the geometric calculation of gear drives with 
asymmetric involute-lantern meshing. The method for calculating the lantern circle radiuses has been 
clarified. The restrictive conditions for the geometric design of the gearing have been defined. Numerical 
examples have been solved. The article is a continuation of the previous work, published in the same 
magazine. 
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 INTRODUCTION 

 
In many fields of the machine-building and first of all for the high efficient gear pumps and 

compressors it is necessary that the meshed gears to have a small teeth number [Vulgakov, 1995], 
[Kotelnikov, 1973]. For the realization of a continuous transmission of motion between gears of a small 
number of spur teeth in [Alipiev, 2010] is proposed a new type of gear meshing called “involute-lantern 
meshing”. The proposed meshing is asymmetric and the gear teeth are convex from the one side and 
concave from the other side. Whence the convex profiles take part in the involute meshing and the 
opposite profiles – in a corrected lantern meshing [Alipiev, 1990]. The geometry of involute-lantern 
meshing for the private case where equal gears mesh is examined in  [Alipiev, Antonov 2009]. For the 
general case, by meshing of different gears (of different teeth number) in the previous paper [Alipiev, 
2011] are clarified the specific details, connected with the geometrical shape and character of gear 
meshing. 

The aim of the present paper is to propose a simplified method for geometric calculation of 
gearings of involute-lantern meshing. The developed method should be based on common principles 
known from the traditional theory of involute meshing and to be suitable for direct use by engineers 
and designers. 

 
 RADII OF LANTERN CIRCLES 

 
The first problem that should be solved by the geometrical design of the proposed gearing is 

connected  with defining the radii  and (Figure 1) of the lantern circles of the teeth profiles. The 
determination of these radii appears as the most complex stage of the geometric calculation of the 
involute-lantern gearing. The complexity is caused by the necessity the lantern circle to contact 
simultaneously the convex and concave tooth side. Besides, in order to define the geometry of the 
concave profile of the one gear [Alipiev, 2011], preliminary it is necessary to be known the radius of 
the lantern circle of the other gear. 

1pr 2pr

In Figure 1а are shown two characteristic positions of the involute-lantern gearing, defined as 
boundary positions of lantern meshing, with the help of which are explained the necessary conditions 
for the determination of radii of the lantern circles. 

In the first boundary position the lantern circle (of a center  and radius ) of gear 2 

contacts in point 
2C 2pr

K  with the last point of the concave profile g  of gear 1. Simultaneously point K  
should be a point of contact of both lantern circles of radii  and , and a point of contact of the 

lantern circle   with the profile .  
1pr 2pr

1pr g

21 
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Figure 1. Boundary locations  

of the lantern meshing   

So that the basic theorem of the gear 
meshing to be met, it is necessary the common 
normal of the conjugate profiles (the concave 
profile g and the circle of gear 2), in their contact 
point K  to cross also the pitch point P . Based on 
these reasons directly it is defined also the first 
condition for correspondence between the radii of 
the lantern circles in the following way:  in the 
first boundary location the lantern circles of both 
gears contact one another, and the connecting 
straight line of their centers  and  crosses 
the pitch point 

1C 2C

P ,  where point C  is situated 

between points  and 
2

1C P . If this condition is not 
satisfied, the concave profile g and the lantern 
circle of radius  will cross (Figure 1b), or will 
not touch (Figure 1c). 

1pr

Analogously, the second condition for 
correspondence between the radii of the lantern 
circles, relating to the second boundary location is 
defined. In this location the lantern circle (of a 
radius  and radius ) of gear 1 (Figure 1а) in 

point 

/
1C
/

1pr

K  contacts with the last point of the 
concave profile  of gear 2. The definition of the 
second condition for correspondence differs from 
the definition of the first one only because the 
locations of the lantern circles towards the pitch 
point 

f

P  are exchanged, as a result of which point 
 is found between points  and /

1C /
2C P . 

For the calculation of  and  a numerical method is developed, that is based on the above 
mentioned conditions for correspondence between the radii of the lantern circles. In this case the 
determination of  and  is simply defined, if the following are specified: the module , teeth 

number  and  of gears  and the transverse contact ration of the gearing . Using these initial 

values the pressure angle 

1pr

2p

w

2pr

1pr

2z

r m

1z αε
α  is directly determined, using the formula [Alipiev, Antonov  2009] 
 )]/(2arctg[ 21 zzw += απεα .                                                     (1) 

As the module  appears as a scale factor, it is more appropriate instead of the radii  and 

 to be calculated the dimensionless coefficients   and  , hence, from equations  

m 1pr

2pr *
1pr *

2pr
 ,                                                              (2)  *

11 pp rmr = *
22 pp rmr =

to define the actual values of the radii of the lantern circles. 
The results from the calculations using the developed numerical method, for each gear, having 

different teeth number of gears, can be represented by the drawing shown on Figure 2. From it, at 
specified value of αε , the coefficients  and  are determined, then from equations (2) are 

determined  the radii of the lantern circles. For instance at 

*
1pr *

2pr

04,1=αε , the coefficients of the radii of 

the lantern circles for the meshed gears ( 41 =z , 52 =z ) are:  and , respectively. 654,0*
1 =pr 305,0*

2 =pr

When designing involute-lantern gearings of equal teeth number of the meshed gears, it is 
appropriate to use the drawing shown on Fig. 3, in which . From the drawing the 

dimensionless coefficient  of the radius of the lantern circle for both gears are directly determined, 
at specified transverse contact ratio and gear teeth number. From Figure 3 it is seen that the possible 
range in which the lantern circle radius is changed, increases together with the increase of gear teeth 
number. Besides, this radius is the largest when the transverse contact ratio is the smallest (

*
2

*
1

*
ppp rrr ==

*
pr

1=αε ). 

Increasing of  the radius of the lantern circle decreases and at  the transverse contact ratio 
gets its maximum value. 

αε 0* =pr
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        Figure 2. Radii of the lantern circles ( 21 zz ≠ )       Figure 3. Radius of the lantern circle at  21 zzz ==

 
 METHOD OF GEOMETRICAL CALCULATIONS 

 
The geometry of spur gear gearings of asymmetric involute–lantern meshing, formed by two 

different gears, is fully defined if the following four independent parameters are specified:   
 

,m ,1z

,2z αε . In some cases, in order to get whole values of the pressure angles, it is more convenient, 
instead of αε  to specify wα  as an independent parameter. Then the pressure angle is calculated by 
the formula 

 wzz απεα tan2/)( 21 += ,                                                       (3) 
got after transformation of equation  (1). A combined variant is also possible, where having preliminary 
specified value of  and formula (1), αε wα is calculated, afterwards the got value for the pressure 
angle is rounded and by equation (3) the real value of αε is defined. 

For the respective calculations is developed a method for geometric design of involute-lantern 
gearings. On Table 1 are given the sequence by which the geometrical calculations are made and the 
necessary formulas for the calculation process. In the last column of these tables are shown also the 
results from the solved numerical example. Using the got geometric dimensions on Figure 4 in scale is 
drawn the picture of meshing of the designed gearing. 

 
Figure 4. Involute – lantern meshing 41=z , 52=z  
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T a b l e  1. Dimensions of gears and gearing parameters 
INITIAL VALUES OF THE GEOMETRICAL CALCULATIONS (Module: 30=m mm; Teeth number of the driving gear:  ; Teeth 

number of the driven gear:  
41 =z

52 =z ;   Involute pressure angle:  °= 36wα ) 

№ Calculated values Sign Calculating formula Numerical 
example 

1 Diameter of the pitch circle 1wd
 11 zmdw =  120,000 

2 Diameter of the base circle 1bd  wb zmd αcos11 =  97,08204 

3 
Profile angle in the last point of the 
involute  1eα  )tgarctg(

1

21
1 we z

zz +
αα =  58,5448° 

4 
Diameter of  location of the last point of 
the involute 1ed  wwe zzzmd αα 22

21
22

11 sin)(cos ++=  186,041 

5 Ratio of the radius of the lantern circle  *
1pr  Figure 2 (numerical definition) 0,6545 

6 Radius of the lantern circle 1pr  *
11 pp rmr =  19,635 

7 
Diameter of location of the centers of 
lanterns 1cd   ]sin)[(cos 2*

121
22

11 pwwc rzzzmd −++= αα  153,912 

8 Diameter of the addendum circle 1ad  111 2 pca rdd +=  193,182 

9 Diameter of the internal circle 1fd  2211 )( af dzzmd −+=  66,126 

10 Ratio of the shape of the concave profile 1λ  111 wc dd=λ  1,2826 

11 
COORDINATES OF THE CONVEX 

PROFILE ]0[ 1ei αα ÷  
iiwi zmX αδα cossincos5,0 11 −= ; iiwi zmY αδα coscoscos5,0 11 =  

where   iiii αααδ −== taninv , 
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COORDINATES OF THE CONCAVE 

PROFILE 
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13 Diameter of the pitch circle 2wd  22 zmdw =  150,000 
14 Diameter of the base circle 2bd  wbd zm αcos22 =  121,3525 

15 
int of the Pressure angle at the end po

involute 2eα  )tgarctg(
2

21
2 we z

zz +
αα =  52,5964° 

16 
of location of the end point of Diameter 

the involute 2ed  wwe zzzmd αα 22
21

22
22 sin)(cos ++=  199,782 

17 Ratio of the radius of the lantern circle Figure 2 (numerical definition) *
2pr  0,3047 

18 Radius of the lantern circle 2pr  *
22 pp rmr =  9,141 

19 
Diameter of location of the centers of 
lanterns 2cd   ]sin)cos 2*

221
22

22 pwwc rzmd −= α  185,591 [(z ++α z

20 Diameter of the addendum circle  2ad  222 2 pca rdd +=  203,873 

21 Diameter of the internal circle 2fd  2212 )( af zzmd d−+=  76,818 

22 
Ratio of the shape of the concave 
profile  2λ  222 wc dd=λ  1,2373 

23 
NATES OF THE CONVEX COORDI

PROFILE ]0[ 2ei αα ÷  
iiwi zmX αδα cossincos50 22 ,−= ; iiwi zmY αδα coscoscos0 22 5,=  

where   iiii αααδ −== taninv , 
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24 COORDINATES OF THE CONCAVE 
PROFILE 
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30 Tooth ratio u  
1

2

z

z
u = ,   where   1,25 12 zz >  

31 Centre distance  wa  2)( 21 zzmaw +=  135,000 

32 Length of the line of involute ABl
 action wAB zzml αsin)(5,0 21 +=  79,351 

33 rse contact ratio of the ε  Transve
involute meshing  α παεα 2tg)( 21 wzz +=  1,04 

PA
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34  ratio of the 
oε  Transverse contact

lantern meshing  πε 2)]/arccos()/arccos([ 222111o cwcw ddzddz +≈  0,93 
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For the geometric design of asymmetric gears of involute-lantern meshing the following two 
restri

ritten by the inequation  

ctive conditions should be obligatorily satisfied: 1) the transverse contact ratio of the involute 
meshing should be larger than one; 2) the coefficients  *

1pr  and *
2pr  of the radii of the lantern circles 

should have positive values. 
The first requirement w

 1>αε ,                                                                         (4) 
provides continuous m tion transfer in the dri

                                  ,                              (5) 
the rt of te profile is eliminated.

o ving direction of movement and by the second 
requirement  

                    0*
1 >pr  0*

2 >pr

 ability of the concave tooth profile to cut a pa the convex involu   In 
practice with the second restrictive requirement the crossing of the tooth flank profiles before the end 
point 2e  (or 1e ) of the respective involute curve (Figure 4) is eliminated. 

 
 RESULTS FROM THE GEOMETRIC DESIGN 

 
Using the designed method for geometric calculation of the involute-lantern meshing are 

designed many gearings. For the realization of a correlation between the calculated values and their 
geometric essence, on Figure 5 and Figure 6 is shown the gear meshing of these gearings. Despite, on 
Figure 5 are shown gearing for which the teeth number of the meshed gears is equal ( 21 zzz == ), and in 
Figure 6 – not equal ( 21 zz > ).  

 
                Figure 5  Involute-lantern gearings 21 zz =       Figure 6  Involute-lantern gearings 21 zz  <
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tablis
restri

From the pictures of meshing it is es hed that the 

 

ctive requirements (4) and (5) for all gearings are 
observed. Besides, from the meshing of the convex profiles it is 
seen that in the moment when a specified pair  of involute 
curves contacts the initial point A  of the line of action AB , at 
the same moment the previous pair of involute curves co acts 
the point 2k , lying on the line AB . The same profiles come out 
of contact  the last possible point

nt

 in B , on the line of action. As 
the involute profiles contact along t  full length of the line of 
action AB , the transverse contact ratio in the driving direction 
of move ent is equal to its maximally possible value at the 
respective pressure angle. 
The designed gears of three and two teeth are prod

he     

m

uced and the 

involute-lantern gearing, formed by two gears of one 
tooth

meshing between the actual samples is shown on Figure 7 and 
Figure 8. 

The 
 each, shown on Figure 5d may be considered exotic. The 

transverse contact ratio in this case is 02,1=aε , and the 

possible interval of its change is =εα 1÷1,04  the gears 
have only one tooth, the necessary ntact ( 1>α

5968. As
 co ε ) is provided 

from the presence in definite moments of two c act points 1k  
and 2k  between the meshed involute profiles. In this gearing t  

( 06685,=wα ), and the radius of the lantern circle is relatively small ( 039,0*=pr   mm ). As a result the 
m een gears of one tooth is interesting only from a theoret ct as a gearing of the 
smallest teeth number. 

From the gearings shown o

ont
he

Figure 7. Involute-lantern gearing 
321 ==zz      

 
Figure 8  Involute-lantern gearing 

221 ==zz   

pressure angle consider ly increases 

eshing betw ical aspe

n Figure 6 it is found that when gears of different teeth number mesh, 
the ra

 the proposed meshing can’t exist 
d a part o

ab

72

dius of the lantern circle of the small gear is larger than the one of the large gear  ( 21 pp rr > ). 

Besides, by increasing the difference between the teeth number, 1pr  sharply decreases. The co d 

research shows that at larger differences between 2z  and 1z
because the teeth of the larger gear are sharpened an f its involute profile is cut. In these 
cases it is appropriate to use modified involute-lantern meshing that will be considered in the next 
publications by the authors. 

nducte

 
 CONCLUSION 

 
The co dn ucted research regarding the geometric design of spur-teeth gearings of involute-lantern

ed by gears of a very small teeth 

 
meshing enables the drawing of the following important conclusions: 
� The area of application of the proposed meshing are gearings form

number.  
� The geometry of the involute-lantern gearing is simply defined by four independent parameters: 

m , 1z , 1z , wα . 
� The radii of the lantern circles  and , contacting the concave teeth profiles are defined by a 1pr 2pr

numerical method. 
� The smallest different teeth number of gears of involute-lantern meshing, for which 1>αε ,  is  

�
21 =z  and  32 =z .  

 The smallest equal teeth number of gears of involute-lantern meshing, for which 1>αε , is  
121 == zz . 
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