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ABSTRACT: An engineering method has been developed for the geometric calculation of gear drives with
asymmetric involute-lantern meshing. The method for calculating the lantern circle radiuses has been
clarified. The restrictive conditions for the geometric design of the gearing have been defined. Numerical
examples have been solved. The article is a continuation of the previous work, published in the same
magazine.
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«* INTRODUCTION

In many fields of the machine-building and first of all for the high efficient gear pumps and
compressors it is necessary that the meshed gears to have a small teeth number [Vulgakov, 1995],
[Kotelnikov, 1973]. For the realization of a continuous transmission of motion between gears of a small
number of spur teeth in [Alipiev, 2010] is proposed a new type of gear meshing called “involute-lantern
meshing”. The proposed meshing is asymmetric and the gear teeth are convex from the one side and
concave from the other side. Whence the convex profiles take part in the involute meshing and the
opposite profiles - in a corrected lantern meshing [Alipiev, 1990]. The geometry of involute-lantern
meshing for the private case where equal gears mesh is examined in [Alipiev, Antonov 2009]. For the
general case, by meshing of different gears (of different teeth number) in the previous paper [Alipiev,
2011] are clarified the specific details, connected with the geometrical shape and character of gear
meshing.

The aim of the present paper is to propose a simplified method for geometric calculation of
gearings of involute-lantern meshing. The developed method should be based on common principles
known from the traditional theory of involute meshing and to be suitable for direct use by engineers
and designers.

*» RADII OF LANTERN CIRCLES

The first problem that should be solved by the geometrical design of the proposed gearing is
connected with defining the radii r, and r, (Figure 1) of the lantern circles of the teeth profiles. The
determination of these radii appears as the most complex stage of the geometric calculation of the
involute-lantern gearing. The complexity is caused by the necessity the lantern circle to contact
simultaneously the convex and concave tooth side. Besides, in order to define the geometry of the
concave profile of the one gear [Alipiev, 2011], preliminary it is necessary to be known the radius of
the lantern circle of the other gear.

In Figure 1a are shown two characteristic positions of the involute-lantern gearing, defined as
boundary positions of lantern meshing, with the help of which are explained the necessary conditions
for the determination of radii of the lantern circles.

In the first boundary position the lantern circle (of a center C, and radius r,,) of gear 2

contacts in point K with the last point of the concave profile g of gear 1. Simultaneously point K
should be a point of contact of both lantern circles of radii r,, and r,,, and a point of contact of the
lantern circle r,, with the profile g.
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So that the basic theorem of the gear
meshing to be met, it is necessary the common
normal of the conjugate profiles (the concave
profile g and the circle of gear 2), in their contact
point K to cross also the pitch point P . Based on
these reasons directly it is defined also the first
condition for correspondence between the radii of
the lantern circles in the following way: in the
first boundary location the lantern circles of both
gears contact one another, and the connecting
straight line of their centers C, and C, crosses
the pitch point P, where point C, is situated
between points C; and P. If this condition is not
satisfied, the concave profile g and the lantern
circle of radius r,, will cross (Figure 1b), or will
not touch (Figure 1c).

Analogously, the second condition for
correspondence between the radii of the lantern

circles, relating to the second boundary location is
defined. In this location the lantern circle (of a

radius C/ and radius r, ) of gear 1 (Figure 1a) in
point K’ contacts with the last point of the
concave profile f of gear 2. The definition of the

second condition for correspondence differs from
the definition of the first one only because the
locations of the lantern circles towards the pitch
Figure 1. Boundary locations point P are exchanged, as a result of which point

of the lantern meshing C/ is found between points CJ and P.
For the calculation of r,, and r,, a numerical method is developed, that is based on the above

mentioned conditions for correspondence between the radii of the lantern circles. In this case the
determination of r,, and r,, is simply defined, if the following are specified: the module m, teeth

number z, and z, of gears and the transverse contact ration of the gearing ¢, . Using these initial
values the pressure angle o is directly determined, using the formula [Alipiev, Antonov 2009]

a,, =arctg[2ze, /(z, +2,)]. (1)

As the module m appears as a scale factor, it is more appropriate instead of the radii rp; and

b2 to be calculated the dimensionless coefficients ry; and rp, hence, from equations

*

rp=mr,, r, =mrp, (2)
to define the actual values of the radii of the lantern circles.

The results from the calculations using the developed numerical method, for each gear, having
different teeth number of gears, can be represented by the drawing shown on Figure 2. From it, at

specified value of ¢,, the coefficients rgl and rgz are determined, then from equations (2) are
determined the radii of the lantern circles. For instance at ¢, =1,04, the coefficients of the radii of
the lantern circles for the meshed gears (z,=4, z,=5) are: r,; =0,654 and r,, =0,305, respectively.

When designing involute-lantern gearings of equal teeth number of the meshed gears, it is
appropriate to use the drawing shown on Fig. 3, in whichr =r; =r ,. From the drawing the

dimensionless coefficient r; of the radius of the lantern circle for both gears are directly determined,
at specified transverse contact ratio and gear teeth number. From Figure 3 it is seen that the possible
range in which the lantern circle radius is changed, increases together with the increase of gear teeth
number. Besides, this radius is the largest when the transverse contact ratio is the smallest (&, =1).
Increasing of €, the radius of the lantern circle decreases and at r; =0 the transverse contact ratio
gets its maximum value.

22 Tome IX (Year 2011). Fascicule 1. ISSN 1584 - 2665



ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

s N
b Z1=4 K \\\\
= N N
0,7 Z2=5 ANy AN
0,658 1] 0,4 N C
0.6 : L7 \\\ N
: =~ N N \‘i\\y
0,5 T\ 0.3 AN b
X s \\ \\
E e\\ AN
0,4 : N N
) o \\ \
0,305 H N N
0,37 0.2\ A N
k) i 7 \)) \ \
: 2 N \\ \‘ N
02 ; N N N
i ~ 0,1 \ .
0,1 l i &N N \\ N\
: - \\/I N N
0 : 0 [N N
1 1,04 1,08 1,12 1,16 12 124 &g 1 1,1 1,2 1,3 €q
Figure 2. Radii of the lantern circles (z;%z,) Figure 3. Radius of the lantern circle at z=7=7,

«*  METHOD OF GEOMETRICAL CALCULATIONS

The geometry of spur gear gearings of asymmetric involute-lantern meshing, formed by two
different gears, is fully defined if the following four independent parameters are specified: m, z,,
z,, &,.In some cases, in order to get whole values of the pressure angles, it is more convenient,
instead of ¢, to specify «, as an independent parameter. Then the pressure angle is calculated by
the formula

e, =(z,+2,)/2xtana,,, (3)
got after transformation of equation (1). A combined variant is also possible, where having preliminary
specified value of ¢, and formula (1), «,is calculated, afterwards the got value for the pressure
angle is rounded and by equation (3) the real value of ¢, is defined.

For the respective calculations is developed a method for geometric design of involute-lantern
gearings. On Table 1 are given the sequence by which the geometrical calculations are made and the
necessary formulas for the calculation process. In the last column of these tables are shown also the
results from the solved numerical example. Using the got geometric dimensions on Figure 4 in scale is
drawn the picture of meshing of the designed gearing.

Figure 4. Involute - lantern meshing z1=4, z,=5
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Table 1. Dimensions of gears and gearing parameters

INITIAL VALUES OF THE GEOMETRICAL CALCULATIONS (Module: m = 30 mm; Teeth number of the driving gear: 1 =4 ; Teeth
number of the driven gear: Z, =5; Involute pressure angle: «,, = 36°)
Ne Calculated values Sign Calculating formula Numerical
example
1 |Diameter of the pitch circle dus d,, =mz, 120,000
2 |Diameter of the base circle d,, d,=mz cosa, 97,08204
3 Froﬁle angle in the last point of the a, _ arctg( Z, tga,, ) 58,5448°
involute ¢ 1
4 tDr:ZT:\Es[rug; location of the last point of d, del _ m\/zf cos? a, +(Z1 ¥ 22)2 sin? a, 186,041
= 5 |Ratio of the radius of the lantern circle r;l Figure 2 (numerical definition) 0,6545
o =
z 6 |Radius of the lantern circle M r,=mr, 19,635
é 7 lDal:tn:;jr of location of the centers of dcl dcl _ m\/zf cos? a, + [(Z1 ¥ Zz)SinaW _ r;l]z 153,912
% | 8 |piameter of the addendum circle d,; d, =d, +2r, 193,182
s |9 |piameter of the internal circle d;, d;,=m(z,+2z,)-d_, 66,126
o |10| Ratio of the shape of the concave profild A4, A =dg, /d, 1,2826
; 11| COORDINATES OF THE CONVEX | X, =-0,5mz, cosa,, sing, /cosa; ; Y, =0,5mz, cosa,, COSJ; [cosa;
= PROFILE o; [0+, ] where o,=Invg,=tang;—q;,
[a] * . .
m ) 2rp{ﬂzsm(§—1(pj+¢j)—sm ;aj}
511 ? (z,+2,)sin (/’J*/‘Lzzzsm( Zil¢j+(p])7 2 Z
2 _ R 2
COORDINATES OF THE CONCAVE \/ P 2hcos et A
12 PROFILE
. z
m 2r,, [ﬂ.zCOS(Z—l(pj-%-goj)—COSgoj]
1= (z,+2,)c0s ;- 2,2 cos( ¢J+(p ) - 2
Jl — 22, cos %(pj + 2
2
13| Diameter of the pitch circle w2 d,,=mz, 150,000
14| Diameter of the base circle dbz dhz =Mz,C0Scx,, 121,3525
15 Fressure angle at the end point of the Ole2 =arctg(=1 -2 Z,+27, tga,, ) 52,5964°
involute )
= Diameter of location of the end point of 2 2 2 qin2
=z =
Z %] the involute de2 de, m\/z2 cos® a,, +(z, +2,)*sin’ a,, 199,782
o 17| Ratio of the radius of the lantern circle | I'p2 Figure 2 (numerical definition) 0,3047
S 18 | Radius of the lantern circle I'p2 r,=mr_, 9,141
°<‘ 19 gstne]frtsr of location of the centers of dc2 dc2 _ m\/zg cos? a, + [(21 n ZZ)SinaW _ rgz]z 185,591
! 120| Diameter of the addendum circle da2 d,, =d, +2r,, 203,873
0 p
—~ |21 Diameter of the internal circle dso d,,=m(z,+2z,)-d., 76,818
- Ratio of the shape of the concave "
Z 22| orofile 2 =d,,/d,., 1,2373
o |[,3] COORDINATES OF THE CONVEX » =—0,5mz, cosa,, Sing, /COSa, ; Y, =0,5mz, cosa,, 0SS, /cosa;
PROFILE &; [0+ ., ] where o =Invg;=tana, —«;,
2r, ilsm( (pJ+(pJ) sing;
COORDINATES OF THE CONCAVE m ’ [
24 PROFILE & > (z,+2,)sinp;— 4,7, sm( ¢J+¢>j)
1-24, cos ¢J + 2
Zy
W 30| Tooth ratio u U=—=, where 22 > 171 1,25
= )
S w |31] Centre distance Aw w=m(z, +2,)/2 135,000
2 8 Length of the line of involute IaB .
bz [32] . | & =0,5m(z, +2,)sina, 79,351
Ez action
=< Transverse contact ratio of the
= 1,04
é 33| involute meshing Ea £,=(2,+2;)9a, /27 /0
o 34 Transverse contact ratio of the g &, ~[z,arccos(d,, /d., )+ z,arccos(d,,,/d )]/27r 0.93
lantern meshing 0 o~ 171 w1 Fel 2 w27 c2 ’
24
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For the geometric design of asymmetric gears of involute-lantern meshing the following two
restrictive conditions should be obligatorily satisfied: 1) the transverse contact ratio of the involute

meshing should be larger than one; 2) the coefficients r;; and r,, of the radii of the lantern circles
should have positive values.
The first requirement written by the inequation
g, >1, 4)

provides continuous motion transfer in the driving direction of movement and by the second
requirement

r,>0, r,>0 (5)
the ability of the concave tooth profile to cut a part of the convex involute profile is eliminated. In
practice with the second restrictive requirement the crossing of the tooth flank profiles before the end
point e, (or e,) of the respective involute curve (Figure 4) is eliminated.

< RESULTS FROM THE GEOMETRIC DESIGN

Using the designed method for geometric calculation of the involute-lantern meshing are
designed many gearings. For the realization of a correlation between the calculated values and their
geometric essence, on Figure 5 and Figure 6 is shown the gear meshing of these gearings. Despite, on

Figure 5 are shown gearing for which the teeth number of the meshed gears is equal (z=z;=z, ), and in
Figure 6 - not equal (z,>7; ).

b) zi=2=3; €.,=1,099; $»=0,239

)8 (D
k)

Y 4
% VR >IP v
7/ l 2 ; 7l
¢) zi=n=2; &.,=1,06; »=0,132 g

¢) z1=3; 2=4; €,=1,03; /,1=0,339; 7»=0,139

m@v ,

d)zi=2=1; €.=1,02; 17»=0,039 d) z=2; 2=3; €,=1,01; 7/»m=0,339; 7,=0,139
Figure 5 Involute-lantern gearings z;=z, Figure 6 Involute-lantern gearings z;<z,
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From the pictures of meshing it is established that the ‘
restrictive requirements (4) and (5) for all gearings are :
observed. Besides, from the meshing of the convex profiles it is
seen that in the moment when a specified pair of involute
curves contacts the initial point A of the line of action AB, at
the same moment the previous pair of involute curves contacts
the point k;, lying on the line AB. The same profiles come out
of contact in the last possible point B, on the line of action. As
the involute profiles contact along the full length of the line of
action AB, the transverse contact ratio in the driving direction Figure 7. Involute-lantern gearing
of movement is equal to its maximally possible value at the 7,=2,=3
respective pressure angle.
The designed gears of three and two teeth are produced and the
meshing between the actual samples is shown on Figure 7 and ‘\
Figure 8.

The involute-lantern gearing, formed by two gears of one
tooth each, shown on Figure 5d may be considered exotic. The
transverse contact ratio in this case is ¢,=102, and the

possible interval of its change is g, =1+1,045968. As the gears
have only one tooth, the necessary contact (¢, >1) is provided Figure 8 Involute-lantern gearing
from the presence in definite moments of two contact points k; 21=2,=2

and k; between the meshed involute profiles. In this gearing the pressure angle considerably increases
(a,,=72,6685"), and the radius of the lantern circle is relatively small (r;:0,039 mm ). As a result the

meshing between gears of one tooth is interesting only from a theoretical aspect as a gearing of the
smallest teeth number.

From the gearings shown on Figure 6 it is found that when gears of different teeth number mesh,
the radius of the lantern circle of the small gear is larger than the one of the large gear (r,>r,,).

Besides, by increasing the difference between the teeth number, r, sharply decreases. The conducted

research shows that at larger differences between z, and z, the proposed meshing can’t exist

because the teeth of the larger gear are sharpened and a part of its involute profile is cut. In these
cases it is appropriate to use modified involute-lantern meshing that will be considered in the next
publications by the authors.

«»  CONCLUSION

The conducted research regarding the geometric design of spur-teeth gearings of involute-lantern

meshing enables the drawing of the following important conclusions:

O The area of application of the proposed meshing are gearings formed by gears of a very small teeth
number.

O The geometry of the involute-lantern gearing is simply defined by four independent parameters:
m, z,, z,, a,-

O The radii of the lantern circles r,, and r
numerical method.

O The smallest different teeth number of gears of involute-lantern meshing, for which ¢, >1, s
z,=2 and z,=3.

O The smallest equal teeth number of gears of involute-lantern meshing, for which ¢, >1, is
z,=2,=1.

p2» Ccontacting the concave teeth profiles are defined by a
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