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ABSTRACT: This paper presents an experimental validation of a state observer for flexible-link manipulators (FLM). The 
design of this observer is based on an accurate dynamic model of the mechanisms, able to take into account the 
coupled rigid-flexible dynamics of the system. Experimental results on a single-link manipulator affected by gravity force 
show that the proposed observer achieves a good estimation of the plant dynamics even if the displacement signal is not 
measured. The evaluation of the performance is done experimentally by comparing the estimated elastic displacement 
with the measures obtained on the field. 
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 INTRODUCTION 

 
Dynamics and control of flexible-link mechanisms are topics of a widespread interest in the 

scientific literature. From the 70’s, a large number of papers have been published: Dwivedy [1] cites 
433 works from 1975 to 2005 on the modeling of this class of mechanism and Benosman [2] cites 119 
papers up to 2003. This popularity is motivated by several advantages of flexible-link manipulators over 
their rigid counterpart, such as lower weight, higher operative speed and reduced power consumption. 
Nevertheless, specific solutions in terms of control must be used to reach satisfactory performance, 
high accuracy and stability. 

Model-based control strategy for flexible manipulators, such as [3,4,5] by the same Author or [6] 
and [7], just to mention some recent works, requires the use of state observers to estimate the 
evolution of the dynamics of the plant. The estimation of the dynamics of such plant is essential, since 
complexity of the motion would otherwise require the use of a very large number of sensors. In this 
case the proposed state-space observer requires the measure of only the angular position of the 
mechanism and the instant value of the torque applied to the mechanism, so it does not require the 
use of other sensor such as strain gauge bridges or accelerometers. For example in [8] a strain gauge 
bridge is adopted to measure the elastic deformation of a four links FLM. 

The test bench is a single-link flexible mechanism affected by gravity force. The performance of 
the proposed Kalman state observer is evaluated experimentally. The estimation of the state of the 
plant is based only on the measure of the angular position of the hub and on the torque signal, thus 
reducing the effects of measures such as strain gauge signal which are usually affected by noise. The 
accuracy of such system is evaluated experimentally by comparing the estimated state with the 
measure of the elastic displacements performed by a strain gauge transducer. 

 
 THE STUDY 

 
In this section the dynamic model of a flexible-link mechanism suggested by Giovagnoni [9] will 

be briefly explained. The choice of this formulation among the several proposed in the last 30 years 
has been motivated by the high grade of accuracy provided by this model, which has been proved 
several times, for example in [10,11]. The main characteristics of this model can be summarized in 
four points: 
1. finite element (FEM) formulation 
2. Equivalent Rigid-Link System (ERLS) formulation [12] 
3. mutual dependence of the rigid and flexible motion 
4. capability of describing mechanisms with an arbitrary number of flexible and rigid links 
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First, each flexible link of the mechanism is subdivided into several finite elements. Referring to 
the Figure 1 the following vectors, calculated in the global reference frame {X,Y, Z}, can be defined: 
•  and  are the vectors of nodal position and nodal 
displacement in the i-th element of the ERLS 

ir iu

•  is the position of a generic point inside the i-th 
element 

ip

• q is the vector of generalized coordinates of the ERLS 
The vectors defined so far are calculated in the global 

reference frame {X,Y,Z}. Applying the principle of virtual 
work: 

0elastic external inertiaW W Wδ δ δ+ + =
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the following relation can be stated: 
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iε , iD , iρ  and iδε  are the strain vector, the stress-strain matrix, the mass density of the i-th link 

and the virtual strains, respectively. F is the vector of the external forces, including the gravity, 
whose acceleration vector is . Eq. 1 shows the virtual works of inertial, elastic and external forces, 
respectively. 
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where  is a matrix that describes the transformation from global-to local reference frame of the i-th 

element, 
iT

iR  is the local-to-global rotation matrix and  is the shape function matrix. Taking iN
( ,i i , )iix y zB  as the strain-displacement matrix, the following relation holds: 
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Since nodal elastic virtual displacements (∂u ) and nodal virtual displacements of the ERLS   
(∂ ) are independent from each other, from the relations reported above the resulting equation 
describing the motion of the system is: 

r

T T T

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

M MS u f
S M S MS q S f

&&

&&

⎡ ⎤
⎢ ⎥
⎣ ⎦

                                            (4) 

M  is the mass matrix of the whole system and S  is the sensitivity matrix for all the nodes. Vector 
 accounts for all the forces affecting the system, including the gravity force. Adding a 

Rayleigh damping, the right-hand side of Eq. 4 becomes: 
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Matrix  accounts for the Coriolis contribution, while  is the stiffness matrix of the whole 
system. 

MG K
α  and β are the two Rayleigh damping coefficients. System in (4) and (5) can be made 

solvable by forcing to zero as many elastic displacement as the generalized coordinates, in this way 
ERLS position is defined univocally. Therefore removing the displacement forced to zero from (4) and 
(5) gives: 
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The values of the accelerations can be computed at each step by solving the system in (6), while 
the values of velocities and displacements can be obtained by an appropriate integration scheme (e.g. 
the Runge-Kutta algorithm). It is important to focus the attention on the size and the rank of the 
matrices involved in (6), and also to the choice of the general coordinates used in the ERLS definition. 
Otherwise it might happen that a singular configuration is encountered during the motion of the 
mechanism [9]. In this case, (6) cannot be solved. 

 
Figure 1: kinematic definitions 
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 ANALISES, DISCUSIONS, APPROACHES AND 

INTERPRETATIONS. EXPERIMENTAL SETUP 
 

In the first part of this section the 
experimental setup and the test bench single-link 
flexible manipulator are briefly described. Then the 
equations and the design of the proposed state 
observer are introduced. In the last part of the 
section the experimental results of the observer 
used with a PID position control are shown and 
discussed.  

The plant used to evaluate the 
effectiveness of the proposed 
predictive control strategy is a single-
link flexible mechanism. It is made by 
a long and thin steel rod, actuated by 
a brushless motor. No reduction gears 
are used, so one end of the link is 
rigidly coupled to the motor shaft. The 

flexible link can rotate on the vertical plane, so the mechanism 
dynamics is heavily affected by the gravity force. The structural and 
dynamic characteristics of the flexible rod can be found in Table 1. 
Owing to the overall dimensions, the mechanism has a limited 
movement range (around ± 25 [deg]) from the vertical position. The 
motion of the link is governed trough an Indramat DKC-MKD brushless 
servo drive system. This drive is used as a torque generator, i.e. the 
instant value of the torque applied by the motor can be controlled by 
using an analog signal. Such a signal is supplied by a National 
Instruments PCI-6259 DAQ board, controlled by a Core 2 Quad PC.  

The angular position is measured by a 4000 cpr quadrature 
encoder is read with a National Instruments PCI-6602 board. The 
strain gauge signal is measured with the same PCI-6259 board used to 

generate the torque reference signal, as it is visible in Figure 3. The data acquisition and the control 
software runs over the LabVIEW Real-Time OS. 

The dynamic model can be described with a good accuracy it with four finite elements. This 
discretization is sufficient to describe accurately the first four modes of vibration: 23 Hz, 63 Hz, 124 
Hz, 206 Hz. Higher order modes can be neglected as they have low energy and high damping values. 

 
 DESIGN OF THE STATE OBSERVER 

 
Most model-based control strategies can be applied only when a measure of the whole state x  is 

available. In this application, there are only two measured values, so a state observer must be used. 
Here a Kalman asymptotic estimator has been chosen. An estimation of  and  (where  is 

the state of the plant model and  is the state of the measurement noise model) can be computed 

from the measured output  as: 
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The gain matrix L  has been designed by using Kalman filtering techniques (see Franklin et al. 
[13]). The design of both the estimator and the prediction model is based on a linear state-space model 
of the FLM which has been obtained by applying the linearization procedure developed by Gasparetto 
in [14] to Eq. (6). The resulting state-space model can be rewritten as:

                                                   (8) ( ) ( ) ( )
( ) ( )

t t
t t

= +⎧
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x Ax Bz
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& t

where A ∈ R [26] x R[26], B ∈ R [26] x R[1], C ∈ R [2] x R[26] are time-invariant matrices. 

 
Figure 2: The experimental setup Table 1: structural and dynamic characteristics of the flexible rod 

 Symbol Value 
Young’s modulus E 230 × 109 [Pa] 
Flexural stiffness EJ 191.67 [Nm4] 

Beam width a 1 × 10−2 [m] 
Beam thickness b 1 × 10−2 [m] 
Mass/unit length m 0.7880 [kg/m] 

Flexible Link length l 1.5 [m] 
Strain sensor position s 0.75 [m] 

First Rayleigh damping constant α 4.5 × 10−1 [s−1] 
Second Rayleigh damping constant β 4.2 × 10−5 [s−1] 

 
Figure 3: The flexible-link mechanism 

used for experimental tests 
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The state vector x  includes all the nodal displacements and the 
angular position , as well as their time derivatives: q

 
Figure 4: Experimental comparison of 

measured and estimated angular position 

 
Figure 5: Experimental comparison of 

measured and estimated elastic 
displacement 

 
Figure 6: Elastic displacement:  

estimation error 

 
Figure 7: Block diagram of the closed-loop 

control system 

1 2 13 2 13( ) [ , , , , , , , , , ]T
it u u u q u u u q= … …x & & & &               (9) 

The output vector of the LTI system consists of two 
elements: , being  the rotational displacement at 

the midspan of the link. The input vector 
6( ) [ , ]Tt u q=y 6u

( )tz  includes the 
torque applied to the link as single element. A comparison of 
measured and estimated values of the link curvature is reported 
in Figures 3,4,5. As it can be seen, the value of the elastic 
displacement can be evaluated with a good accuracy. The angular 
position of the mechanism is controlled with a PID controller with 
gravity compensation. The block diagram of the closed-loop 
control system is provided in Figure 6. 

It must be pointed out that the state observer has the 
availability of only the quadrature encoder signal and the nominal 
torque applied to the rod. In this way, the robustness of the 
closed-loop system can be improved, since the measure of the 
strain gauge signal is heavily affected by noise. Moreover, the 
reduced number of sensor make this control strategy suitable to 
most robotic manipulators for industrial use, since sensors such as 
accelerometers and strain gauge bridges are usually unavailable 
on these systems. 

 
 CONCLUSION 

 
A state estimator for flexible-link mechanisms has been 
implemented and tested on a real single link mechanism. It has 
been proved experimentally that the state estimator used for all 
the experimental tests is capable of providing an accurate 
estimation of the plant dynamics with a very limited set of 
sensors. Such an estimator needs the measure of the angular 
position only and the torque applied by the brushless motor. For 
this reason, the proposed controller can be easily adapted to 
most of the industrial manipulators, which usually do not have 
sensors for measuring the elastic displacement of the links. 
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