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ABSTRACT: Alpha-cut based calculations are widely used in fuzzy arithmetic and fuzzy rule interpolation 
based reasoning. One of the key issues of the successful development of these applications is the availability 
of a toolbox that makes possible the quick and efficient calculation of the α-cuts’ endpoints. In this paper, 
after reviewing some basic theoretical concepts, we present the methods of the α-cut calculation in case of 
the most used membership function types. The presented methods were also implemented in C# in form of 
a dynamic link library, which is easy useable in every .NET or traditional Windows or Linux targeting 
software applications. 
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 INTRODUCTION 

 
Fuzzy sets can be seen as an extension of the traditional set concept. In case of a crisp 

(traditional) set (A) every x element of a universe of discourse X can be evaluated only two-way, either 
as part of the set (x∈A) or as not belonging to the set (x∉A). Contrary to this all-or-nothing approach 
the fuzzy concept [11] makes possible a more colorful interpretation of boundaries. It allows the 
expression of the membership’s measure not only by 0 and 1 but also by any value of the unit interval. 
The fuzzy approach has been successfully applied in several areas of the science and the everyday life. 
Thus has been emerged the fuzzy arithmetic (e.g. [2],[3]) and one can find many practical applications 
in the field of control (e.g. [9],[4]) or fuzzy modeling of processes and systems (e.g. [6]). A huge 
amount of these applications does the computations α-cut wise based on Zadeh’s extension principle 
[3]. One of the key issues of the successful practical application is the availability of a toolbox that 
supports the auxiliary calculations, i.e. the quick and efficient determination of the α-cuts.  

In this paper, after reviewing some important theoretical concepts, we present the �-cuts’ 
calculation methods for the most often used membership function types. The methods being presented 
were also implemented in C# in form of a dynamic link library, which is easy useable in every .NET or 
traditional Windows or Linux targeting software applications. 

 
 FUZZY SETS AND RELATED CONCEPTS 

 
In this section we review briefly some concepts and definitions that are strongly related to the �-

cut calculation and its applications. 
Universe of discourse. Notation: X or U. 
The universe of discourse is a crisp (traditional) set, also called domain, from which the members 

of a fuzzy set are taken. For example the set of the real numbers (ℜ ) can be a universe of discourse. 
Fuzzy set. Notation: capital roman letter, e.g. A. 
The fuzzy set can be seen as an extension of the traditional set concept. While in case of the 

crisp sets each member of the universe of discourse can be tagged squarely as member of the set or 
outsider, in case of fuzzy sets one can assign a membership level as well. 

Membership function. Notation: Aμ . 
The function [ ]1,0: →XAμ  expresses in which measure the members of the universe X belong to 

the fuzzy set A. 
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Normal fuzzy set.  
The fuzzy set A is considered normal if Xx∈∃ , for which ( ) 1=xAμ . 

α-cut. Notation: . [ ]αA

The α-cut of a fuzzy set (A) is a crisp set that is defined by  

 [ ] ( ) ( ]{ } [ ]ααα ααμ aaxXxA A ,1,0;| =∈≥∈= , (1) 

where [ ]{ }αα Aa inf=  and [ ]{ αα Aa sup= }  are the lower respective upper endpoints of the α-cut. 
Convex fuzzy set.  
A fuzzy set (A) is convex when all of its α-cuts are convex sets 

 ( )( ) ( ) ( )[ ]2121 ,min1 xxxx AAA μμλλμ ≥-+  ∀ , 2
21 , ℜ∈xx [ ]1,0∈λ . (2) 

Support. Notation: supp(A) or . [ ] +0A
The support of a fuzzy set is defined by 

 supp ( ) ( ){ }0| >∈= xXxA Aμ . (3) 
Core. Notation: core(A) . 
The core of a fuzzy set is crisp set that contains those elements of X for which the membership 

function takes its maximum value 
 core ( ) ( ) ( )( ){ }xxXxA AA μμ max| =∈= . (4) 

Compact fuzzy set. 
A fuzzy set (A) is compact when its support is bounded, i.e. ,, 21 Xxx ∈∃  supp . ( ) [ ]21 ,xxA ⊂
Fuzzy number. 
A fuzzy set A ( [ ]1,0: →ℜAμ ) is a fuzzy number when fulfills the following requirements [2]. 

 The set is convex and normal. 
 The membership function is at least piece-wise continuous. 
 The set is compact on ℜ . 

Reference point. Notation:  ( )ARP
The reference point of a fuzzy set (A) is that element of X, which is in one or more aspects 

characteristic to the position of A. The reference point is used by several fuzzy methods (e.g. fuzzy 
rule interpolation based inference techniques) for the characterization of a set’s position. Although 
there are several options for its selection, usually the center point of the set’s core is applied for this 
task [1].  

Left/Right flank. 
The point {RP(A), µA(RP(A))} divides the membership function (set shape) into two parts called 

left and right flanks of the set. 
 

 ALPHA-CUT COMPUTATION 
 

Several fuzzy methods use the set’s left and right flanks separately for the calculations; 
furthermore in several cases one needs different α-cuts in case of the two flanks.  In order to satisfy 
this need our toolbox calculates and handles separately the lower and upper endpoints of the cuts. The 
calculation methods were developed for the most frequently applied convex membership function 
types, which are the singleton, the triangle, the trapezoidal, the piece-wise linear, the bell-shaped 
(Gauss), and  the LR type. 

 
 SINGLETON TYPE MEMBERSHIP FUNCTION 

 
The α-cut computation is the simplest in case of the singleton type fuzzy sets (see figure 1.a), 

because one needs to know only the value of the parameter a. Here the membership function is 
described by  

 ( )
⎩
⎨
⎧

=
≠

=
.1

0
;

ax

ax
axSingletonμ  (5) 

All cut endpoints are identical with the value a. 
 

 TRIANGLE SHAPED, TRAPEZOIDAL AND CONVEX PIECE-WISE LINEAR TYPE MEMBERSHIP FUNCTIONS 
 

In case of triangle shaped, trapezoidal and convex piece-wise linear type membership functions 
the α-cut computations are similar, thus we discuss these cases together. First of all let us give a brief 
description of the formulas used for their calculation. We can describe the triangle shaped membership 
function (see Fig. 1.b) by 
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where the parameters a, b, and c define the break-points of the shape. Similarly the trapezoidal type 
membership function (see Fig. 1.c) is defined by  

 ( ) ⎟⎟
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ax
dcbaxtrapezoidμ , (7) 

where the parameters a, b, c , and d define the break-points of the shape. The ith line segment of a 
convex piece-wise linear membership function (Figure 1.d) is given by  
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. (8) 

where { iii xp μ,=  and { 111 , +++ = iii xp }μ  are the bounding points of the line segment.  
In case of the membership function types (6)-(8) the computation of the α-cuts is based on 

similar triangles. A third point is assigned to the two endpoints of the line segment (Fig. 2) in order to 
form a rectangular triangle.  and  are adjacent points where the x and µ values (co-ordinates) 
are known. The sides of the triangle can be calculated by their help. 

ip 1+ip

 
Figure 2. The ith linear segment of the 

set shape 

 
Figure 3. Similar triangles 

 
The determination of a left 

endpoint of a α-cut is shown in Fig. 3 
(the computation of the right endpoint is 
similar). The figure also shows that the �-

cut creates a new triangle. The two existent triangles are similar ones. Their most important feature is 
that the corresponding sides are in the same ratio. The α-cut computation becomes straightforward 
owing to this feature. 

Fig. 3 shows that the two known sides of the first triangle are A and B. The corresponding sides 
of the triangle created by the α-cut are h and u, where the size of h is known. Our task is to determine 
u. In case of the α-cut’s left endpoint the x co-ordinate of  plus the size of u give the endpoint we 

are looking for (in case of the α-cut’s right endpoint u is subtracted from the abscissa of the  
point). For the computation of u the following equations are used. 

ip

1+ip
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= .                                                      (10) 

 
 SMOOTH MEMBERSHIP FUNCTIONS 

 
In case of smooth membership functions (e.g. Gaussian, LR, etc) the �-cut computations are 

similar, thus we discuss these cases also together. An example of a Gaussian type membership function 
is shown in Fig. 4. It is calculated by the formula:  

( )
( )

⋅
−

−

= 22

2

,; σσμ
mx

Gauss emx , [ ]endstart xxx ,∈                                     (11)  
where σ is the variance and m is the expected value, and xstart, xend are the lower receptive upper 
bounds of the partition. 

 

 
Figure 1 Singleton (a), triangle shaped (b), trapezoidal 
(c), convex piece-wise linear (d) membership functions 

and the lower endpoints of their �-cuts 



ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering 

One calculates the LR function by 

Tome IX (Year 2011). Fascicule 1. ISSN 1584 – 2665 196 

( )
⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥

<
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −
−

=
−

−

cxe

cx
xc

cx
cx

LR
3

2

1,0max
,,;

β

αβαμ , 

                   [ ]endstart xxx ,∈ .                   (12) 
Here we use the bisection method for the calculation of 

the endpoints of the cuts. After bisecting an interval, one 
calculates the membership value for the resulted abscissa value 
(x) using the equation                                     (11) or (12). One 

continues the search in that half interval which contains the demanded α-value. Fig. 4 illustrate the 
steps of the algorithm. After each bisection one chooses the darker half interval containing the α 
value. The stopping condition of this method is the execution of 100 iterations, which usually provides 
a sufficiently goo

 
Figure 4  Gauss type membership 

function and the lower endpoint of 
its α-cut 

d approximation. 
 

 CONCLUSION 
 

The presented calculation methods were implemented in C# in form of a dynamic link library 
(DLL). The lower and upper endpoints of the α-cuts can be calculated by calling the AlphaCut method. 
It takes as parameters the membership function type (we defined an enumeration type for this 
purpose), the actual parameters of the shape, two array containing the �-levels for which the lower 
and upper cut-endpoints have to be calculated, as well as two references for the two arrays in which 
the results will be returned. 

We applied the toolbox successfully in course of the development of the software support for a 
fuzzy arithmetic based student evaluation method (FUSBE) [5], as well as in course of the 
implementation of a α-cut based fuzzy rule interpolation method called LESFRI [7]. 

Further research plans include the consideration of other possible quicker algorithms for the 
calculation of the α-cuts in case of smooth membership function types. 
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