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ABSTRACT: The paper proposes a methodology to find numerical solutions of Diophantine equations using 
steepest ascent version of Hill Climbing. It represents possible solutions of a Diophantine equation using tree 
and adopts a novel mechanism to generate successors. The proposed heuristic function makes the process 
of finding numerical solution a minimization process. The effectiveness of the methodology is illustrated 
using a class of Diophantine equations given by a1. x1 

p1 + a2. x2 
p2 + …….. + an. xn 

pn = N where ai and N are 
integers. The experimental results validate that the effectiveness proposed methodology in finding 
numerical solutions of Diophantine Equations with sufficiently large powers and large number of variables. 
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 INTRODUCTION 

 
Diophantine Equations [Cohen 2007] [Rossen 1987] [Zuckerman 1980] are polynomial equations, 

given by 
     f (a1,a2, …..,an, x1,  x2, ……, xn) = N                                                 (1) 

where ai  and N are integers. Such equations, third century BC Alexandrian Mathematician Diophantus 
[Bashmakova 1997] [Bag 1979] has been credited with studying them in detail, are of different types. 
The simplest ones are the linear equations given by: 

ax1 + bx2 =c                                           (2) 
The equations of the form  

                                                x1 2 + x2 2 = x3 2                                                                                                  (3) 
are important as they give solutions, which are known as Pythagorean triplets. In 1665, French 
Mathematician Fermat popularized such equations by famously stating that equations of the form  

                                               x1 n + x2 n = x3 n                                                                                                                      (4) 
have no solutions for n>2, though the world had to wait till 1994 for an actual proof, which used  
elliptic curves [Shirali & Yogananda 2003]. An elliptic curve (Stroeker and Tzanakis, 1994; Poonen, 
2000) is a particular type of Diophantine equation given by   

                                                     y2 = x3 + ax + b,                                                        (5) 
where and b are rational numbers and the right hand side of the equation (5) are given to have distinct 
roots. There are many such important equations in the collection of Diophantine equations.  

Diophantine equations are used extensively in many fields. Elliptic curve based public key 
cryptosystems [Lin CH 1995][ Laih CS 1997] [Koblitz 1984] offer better security provisions comparing 
with other cryptosystems. The performance of super computers can be enhanced by parallelizing 
compilers to check the problem of data usage which can be reduced to characterization of a 
Diophantine equation [Zhiyu 1989]. Computable economics [Velu 2004] uses decision problems like 
Diophantine equations to propose a change in the market equilibrium conditions instead of the 
conventional parameters. Integer factorization [Knuth 1997] uses Diophantine equations in the process 
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of breaking down a composite number into smaller non-trivial divisors. Diophantine equations are also 
used in other areas like algebraic curves [Ponnen 2000], projective curves [Brown & Myres 2002] 
[Stroeker & Tzanakis 1994] and theoretical computer science [Ibarra 2004][Guarari  1982]. These 
application areas make Diophantine equations an important domain not just in the realm of 
Mathematics but in other fields too. 

Though Diophantine equations have a great historical background and have been used in many 
areas, there does not exist a general method to find solutions of such equations [Davis 1992] 
[Matiyasevich 1993].  Then, finding numerical solutions to such equations is the only next way out. This 
is a tough task as the computing complexity involved in such a process is quite high. In this regard, 
applying artificial intelligence techniques, which are known for maneuvering huge search space, is 
significant. Literature talks about few attempts to find numerical solutions of Diophantine equations 
using hard computing and soft computing techniques of Artificial Intelligence. Abraham and Sanglikar 
[Abraham and Sanglikar 2001] used basic genetic operators like mutation, inversion and crossover 
[Michalewich 1992] to find numeric solutions of some elementary equations. They [Abraham and 
Sanglikar 2007 a] later used a procedure called ‘host parasite co-evolution’ [Hills 1992] [Paredis 
1996][Wiegand 2003] in a typical genetic algorithm to find numerical solutions. They also proposed 
[Abraham and Sanglikar 2007 b] a unique evolutionary and co-evolutionary [Rosin and Belew 1997] 
computing method to find numerical solutions of such equations. Joya et al [Joya et al., 1991] used 
higher order Hopfield neural networks to find solutions of Diophantine equations.  Abraham and 
Sanglikar [Abraham and Sanglikar 2008] offered simulated annealing as a possible strategy to find 
solutions of these equations. Abraham et al [Abraham et al 2010] discussed in detail a particle swarm 
optimization based method to find numerical solutions of such equations. In addition to these methods 
based on soft computing, literature also mentions A * search based hard computing mechanism as a 
possible alternative to find numerical solutions of these equations [Abraham and Sanglikar 2009]. Hard 
computing methods are significant as they try to explore as many candidate solutions as possible in a 
systematic way unlike soft computing, which uses randomness in the process thereby risking of 
‘slipping away’ the solutions on the way.   

This paper proposes hill climbing as a hard computing artificial intelligence technique to find 
numerical solutions of Diophantine equations. Hill Climbing is a local search [Russel & Norwig 2003] 
technique. It starts with an initial solution and steadily and gradually generates neighboring successor 
solutions. If the neighboring state is better than the current state, we make the neighboring state the 
current state. The whole process can be looked at as an optimization process [Lugar 2006]. There are 
different variants of hill climbing like simple hill climbing, steepest hill climbing, stochastic hill 
climbing and random restart hill climbing. The paper uses steepest ascent version of the hill climbing. 
In steepest hill climbing all successor nodes are probed and compared for its relevance and then the 
best amongst them is taken as the successor node. This results in having an exhaustive local search and 
identification of the best possible successor of a given node at any instant of time. 

 
 PROPOSED METHODOLOGY 

 
The system developed to find numerical solutions of Diophantine equations using hill climbing is 

based on the steepest ascent version of hill climbing. It uses a system of equations given by   
     a1 . x1 p1 + a2 . x2 

p2 + …….. + an . xn pn = N                                           (6) 
where ai and N are integers, for demonstrating the effectiveness of the system proposed. 

REPRESENTATION & SUCCESSOR NODES 
The possible solutions of the Diophantine equation (6) are represented by a tree whose nodes are 

taken as n-vectors given by (x1, x2, …, xn). The procedure starts with an initial solution, given to be   
(1, 1, 1, …… , 1) and uses two queues in its construction. The first queue, which is called PROBE-Q, is 
used to store the nodes, which have been probed. The second queue, which is referred as NOPROBE-Q, 
is used to store the nodes, which have been generated but not better than the current node. These two 
queues help to separate the generated nodes into two distinct classes: ‘probed nodes’ and ‘not-probed 
nodes’.  

Successor nodes of the current node are generated in the methodology using specially defined 
production rules. The production rules applied are given by: 

(x1, x2, …, xi , …. ,  xn)   (x1, x2, …, xi+1 , …. ,  xn) for i =1, 2, …., n                      (7) 
These production rules help to generate all possible nodes in the vicinity of the current node. Hill 

climbing, being a local search technique, needs to explore all possible nodes within the neighborhood 
of the current node. The successor nodes generated in this way, take care of this requirement of the 
search strategy. 

Heuristic function 
The heuristic function used to evaluate the effectiveness of a node   (x1, x2, x3, …., xn)  in the 

search process is given by  
           H(x1, x,2 ….., xn) = N – (a1x1

p1  +  a2x2
p2  +  a3x3

p3  + ………….  +  anxn
pn )             (8)    
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Since the objective of the procedure is to find numerical solutions of equation (6), the problem 
reduces to find a vector given by (x1, x2, …, xn) with H(x1, x,2 ….., xn) = 0. The value of ‘H’ shows how far 
is a given node away from the goal node. Lower the value of ‘H’, closer is the node to the solution. 
However, the negative value of ‘H’ requires some extra care to make the search process on track. 
Whenever H value becomes negative, the proposed procedure does not expand the corresponding node 
even if that has better heuristic function value compared to others. Instead, the node with the next 
better heuristic function value is expanded and the process is continued. In other words, the nodes 
having negative H values are replaced with the better nodes from the NO-PROBEQ. 

Backtracking 
It is possible to have a current node, with all its successor nodes having inferior heuristic values 

in comparison with that of the current node. Steepest ascent hill climbing always demands having 
better nodes as successor nodes to continue the procedure. This drawback of hill climbing is overcome 
in the procedure by incorporating a strategy of backtracking. As per this, when the procedure fails to 
produce better nodes as successor nodes, it leaves the current node and goes back or backtracks to the 
previous best node generated. Then, the exploration process resumes from that node and the process 
of traversing through the tree in another path is followed. It is quite possible that during the search 
process, the procedure might hit on such inferior successor nodes on a regular basis. In such cases, the 
procedure is continued with backtracking at each and every instance. This way an unhindered search 
procedure is guaranteed always in the proposed methodology.   

Algorithm 
The basic steepest ascent hill climbing algorithm is slightly restructured to be acquainted with 

the constraints of Diophantine equations. The algorithm used in methodology is explained in the 
following lines.   

Step1: Initialize node, which is usually (1, 1, . . . . , 1). Evaluate it.  
           Put it in the PROBE-Q. 
Step2: If PROBE-Q is empty, then stop. 
Step3: Pick first node from PROBE-Q. Label it as current node: C-Node. 
Step4: If C-Node is the goal node then return C-Node as a solution.   
           (Goal state is reached when H(x1, x2 ….., xn) = 0 
Step5: If C-Node is not a goal node, check whether H(x1, x,2 ….., xn) > 0 

a) If yes, generate successors of C-Node and evaluate them.  
b) If no, Go to step 2. 

       Step6: Compare successors of C-node and the better node amongst them.   
                  Store the remaining nodes in the NOPROBE-Q.        

a) If the better node is better than C-Node and if it has not been probed before, then make it C-Node. 
If it has been probed, then pick the first element from NOPROBE-Q and make it the C-Node. Put C-
Node in the PROBE-Q. 

b) If the better node is not better than C-Node, then pick the first element from the NOPROBE-Q, 
make it the C-Node and put in PROBE-Q. If NOPROBE-Q is empty, then do nothing. 

Step6: Go to step 2. 
The algorithm as it is used in the paper is illustrated using a simple Diophantine Equation given 

by x1
2 + x2

2  = 100. The initial node is (1, 1) and H(1, 1) = 100 –(12 +12 ) = 98. 
Step1: Put (1, 1) in PROBE-Q. 
Step3: C-Node = (1,1). 
Step5: Since it is not a goal node and H(C-Node) = 98 > 0 , generate Successors of it. 
 

                                                               1, 1 
 
 

                                              2, 1                            1, 2 
 

Step6: Both (2,1) and (1, 2) have the same heuristic function value 95.   So, choose any one say 
(2,1). Put (2,1) in PROBE-Q and (1, 2) in NOPROBE-Q.  Generate children of (2,1). 

 

                                                                  2, 1 
 
 

                                                   3, 1                         2, 2 
 

Since the heuristic value of node (3, 1) is 90, which is better than the heuristic value 92 of the 
node (2, 2) and 95 of (2, 1) we select (3, 1) as the next node to be expanded. Continue this process of 
generating successors and identifying the best amongst them to be C- Node, which is illustrated in 
figure 1. If the process gets stuck in not finding a better successor, back track to the previous node and 
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continue the process of exploration until a node with heuristic function value zero is generated. Such a 
node will be the solution of the given Diophantine equation.  

 
        98 

 
 
 

                                                          
                                                             95                            95 

 
 
 
 
 

                             90               92        
 
 
          
   

                                                         Figure 1: Search tree of x1
2 + x2

2 = 100 
 

 

2,2 3,1 

  
1,2 

1,1 

  
2,1 

 ANALYSIS, DISCUSSION AND INTERPRETATION 
 

The proposed methodology has been implemented in Java. The user supplies the details of the 
equation like number of variables involved, coefficients, powers and the value of N. The experimental 
results have been analyzed and discussed in the following sections.    

Nodes Generated 
Figure 2 shows the nodes generated by the methodology for an elementary equation x1

2 + x2
2 = 

149, before finding the first solution (10,4).  The process generated 68 nodes during the search 
process. The figure shows the steady search of the process in the search space. Figure 3 demonstrates 
the convergence of heuristic function values of the nodes generated in the same demonstration. 
Initially, there is a sudden reduction of heuristic function values and once the process becomes 
mature, there is a directed approach towards the value zero, finally resulting in the solution. 

    
Figure 2: Nodes generated during the search     Figure 3: Heuristic function values of nodes 
Results on equations with varying degrees 
Table 1 demonstrates the results obtained when the system was run for different Diophantine 

equations with varying values of degrees. It shows that irrespective of reasonably large values for 
degrees and higher values of N, the system could give solutions within a smaller number of iterations. 
This points out that those large values of N do not affect the efficiency of the system. In addition, the 
use of only a lesser number of iterations validates the effectiveness of the system in finding solutions 
of Diophantine equations with larger value of N. 

Table 1: Results on equations with varying degrees 
No Diophantine Equation Degree of equation Solution found Iterations 
1 x1 

2  + x2 
2    =  625  2 24,7 29 

2 x1  
3  + x2  

3    =  1008 3 10, 2 10 
3 x1 

4  +  x 4  =  1921   2  4 6, 5 9 
4 x1  

5 + x2   
5    =  19932 5 7, 5 10 

5 x1  
6  +x2  

6      =  47385 6 6, 3 7 
6 x1  

7  +  x2  
7   =  4799353 7 9, 4 11 

7 x1  
8 + x2  

8    =  16777472 8 8, 2 8 
8 x1  

9 + x2  
9    =  1000019683 9 10, 3 11 

9 x1  
10 +x2 

10   =  1356217073 10 8, 7 13 
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Results on equations with varying number of variables 
Table 2 shows the results obtained when methodology was run on Diophantine equations with 

different number of variables. This shows that the system provides solutions even when the number of 
variables is competitively high. 

Table 2: Results on equations with varying number of variables 
No Diophantine Equation Degree of equation Solution found Iteration required 
1 x1 

2+x2 
2 = 149 2 10, 7 34 

2 x1
2+x2

2+x3
2 = 230 3 15, 2, 1 15 

3 x1
2+x2

2+…+x4
2= 295 4 17, 2, 1, 1 17 

4 x1
2+x2

2+….+x5
2= 325 5 17, 1, 1, 3, 5 22 

5 x1
2+x2

2+….+x6
2= 420 6 20, 1, 1, 1, 1, 4 22 

6 x1
2+x2

2+….+x7
2= 450 7 21, 2, 1, 1, 1 ,1 21 

7 x1
2+x2

2+….+x8
2= 590 8 23, 2, 1, 1, 1,1, 2, 7 86 

8 x1
2+x2

2+….+x9
2= 720 9 26, 2, 1, 1, 1, 2, 2, 2, 5 42 

9 x1
2+x2

2+….+x10
2=956 10 30, 2, 1, 1, 1,1, 2, 2, 2, 6 48 

 
 CONCLUSION 

 
The paper presents steepest ascent hill climbing search based procedure to find numerical 

solution of Diophantine equations. Local optimum points were tackled by resorting to backtracking as 
and when the procedure hit on such points. The experimental results showed that the technique work 
fine for Diophantine equations of varied types. However, the solutions generated, especially when the 
number of variables is large, have the tendency to have the coordinates closely placed. Further 
enhancement to the work is directed at addressing this issue. 
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