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ABSTRACT: Image denoising is a key issue in all image processing researches. The great challenge of image denoising
is how to preserve the edges and all fine details of an image when reducing the noise. In this paper, a comparative
study of image denoising techniques for underwater SONAR (Sound Navigation and Ranging) images relying on
spatial filters is presented. In particular four types of spatial filters (Average, Gaussian, Laplacian of Gaussian and
Median filters) are applied to judge the efficiency. On each image, different window size configurations starting
from 3x3 to 29x29 are applied and the performances of image filtering techniques are analyzed by the estimation
of parametric values such as Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR) and execution time for
filtering the images. It is observed that by increasing the window size the execution time will increase and PSNR
values will decrease. With this analysis and from the results it is found that the optimum filter is Gaussian and the
optimum window size is 3x3 for the underwater SONAR images which gives the best execution time, MSE and the
PSNR value (37.87dB).
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INTRODUCTION

The term spatial domain refers to the image plane itself, and the methods in this category are
based on direct manipulation of pixels in an image. In this paper the main focus is on two important
categories in spatial filtering i.e. linear and nonlinear spatial filtering. The spatial filtering is also called as
neighbourhood processing. An image can be modified by applying a particular function to each pixel
value. The neighborhood processing may be considered as an extension of this, where a function is
applied to a neighborhood of each pixel. The idea is to move a “mask (kernel)”: a rectangle (usually with
sides of odd length) or other shape over the given image. Depending on the computations performed on
the pixels of neighborhoods the operations is called as linear or nonlinear spatial filtering and are clearly
described in this paper. Though various filters are already available in the open literature, here this
paper focuses on finding out an optimum filtering technique for underwater SONAR images. For this
purpose, several spatial filtering techniques such as Average, Gaussian, Laplacian of Gaussian and
Median filters are analyzed by the estimation of parametric values such as Mean Square Error (MSE),
Peak Signal to Noise Ratio (PSNR) and execution time for filtering the images.
SPATIAL FILTERS

Linear spatial filtering: If the function by which the new gray value is calculated is a linear
function of all the grey values in the mask, then the filter is called linear filter. Example of a linear filter is
average filter. A linear filter can be implemented by convolving the mask with the input image. For a 3x5
mask, the convolution is shown in Eq. 1:

iim(s,t)p(iﬂ,i“) (1)

s=—1t=—2

where m(s,t) is the mask coefficients; p(i,j) is the image coefficients.

The spatial thus requires three steps:
1. position the mask over the current pixel,
2. form all the products of the filter elements with the corresponding elements of neighbourhood,
3. Sumup all the products, now this is the output pixel with which the current pixel is to be replaced.
This must be repeated for every pixel in the image.

Spatial filtering is nothing but spatial convolution. The method for performing a convolution is
the same as filtering, except that the filter must be rotated by 180° before multiplying and adding. Using
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the m(s,t) and p(i,j) notation as before, the output of a convolution with a mask for a 3x5 mask for a
single pixel is

S m(-s,-t)p(i+5,j+t) )

s=—1t=—2
where, m(s,t) is the mask coefficients; p(i,j) is the image pixel values
The same result can be achieved by rotating the image pixels by 180° (Eq. 3), this does not affect
the result obtained from Eq. (2).

S m(s,t)p(i-s,i~t) )

s=—1t=—2

Non linear filters: The non linear filters are the filters whose response is based on the ordering the
pixels contained in an image neighborhood and then replacing the value of the center pixel in the
neighborhood with the value determined by the ranking result. Simple examples are the maximum
filter, which has as its output the maximum value under the mask, the corresponding minimum filter,
which has as its output the minimum value under the mask, and the median filter, which has the output
the median value under the mask.
AVERAGE FILTER

Mean filtering is a simple, intuitive and easy to implement method of smoothing images, i.e.
reducing the amount of intensity variation between one pixel and the next. It is often used to reduce

noise in images. For example, linear filtering for a
3x3 mask is, taking the average of all nine values al b |c .
within the mask. This value becomes the grey value ile | —* L;}{f1+b+c +d+e+f+g +h+i)
of the corresponding pixel in the new image. This glh|i .
operation is described in the Figure 1.
The idea of mean filtering is simply to replace Figure 1. Operation of averaging filter

each pixel value in an image with the mean (“average') value of its neighbors, including itself. This has
the effect of eliminating pixel values which are unrepresentative of their surroundings. Mean filtering is
usually thought of as a convolution filter. Like other convolutions it is based around a kernel, which
represents the shape and size of the neighborhood to be sampled when calculating the mean. Often a
3x3 square kernel is used, although larger kernels (e.g. 5x5 squares) can be used for more severe
smoothing. (Note that a small kernel can be applied more than once in order to produce a similar but
not identical effect as a single pass with a large kernel.) Computing the straightforward convolution of
an image with this kernel carries out the mean filtering process.
GAUSSIAN FILTERING

The Gaussian smoothing operator is a 2-D convolution operator that is used to "blur' images and
remove noise. In this sense it is similar to the mean filter, but it uses a different kernel that represents
the shape of a Gaussian ("bell-shaped') hump. This kernel has some special properties which are detailed
below. The 1-D Gaussian filter has an impulse response given by

XZ

; X
G(x) = e (4)
2ro
For the 2-D Gaussian filter, it is the product of two such 1-D Gaussians. And is given by
X2+)/2
1 T
G(xy)=—e * (5)
2no

where, x is the distance from the origin in the horizontal axis, y is the distance from the origin in the
vertical axis, and ¢ is the standard deviation of the Gaussian distribution.

The idea of Gaussian smoothing is to use this 2-D distribution as a "point-spread' function, and this
is achieved by convolution. Since the image is stored as a collection of discrete pixels we need to
produce a discrete approximation to the Gaussian function before we can perform the convolution. In
theory, the Gaussian distribution is non-zero everywhere, which would require an infinitely large
convolution kernel, but in practice it is effectively zero more than about three standard deviations from
the mean, and so we can truncate the kernel at this point. Once a suitable kernel has been calculated,
then the Gaussian smoothing can be performed using standard convolution methods. The convolution
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can in fact be performed fairly quickly since the equation for the 2-D isotropic Gaussian shown in Eq. 5 is
separable into x and y components.

GzD(Xry):[ ! 8;;2]><[ ! 82)2'2] =G1D(X)><G1D(y) (6)

2w o 2w o

Thus the 2-D convolution can be performed by first convolving with a 1-D Gaussian in the x
direction, and then convolving with another 1-D Gaussian in the y direction. The Gaussian filter not only
has utility in engineering applications. It is also attracting attention from computational biologists
because it has been attributed with some amount of biological plausibility, e.g. some cells in the visual
pathways of the brain often have an approximately Gaussian response.

LAPLACIAN OF GAUSSIAN

The laplacian is a 2-D isotropic measure of the 2" order spatial derivative of an image. The
laplacian of an image highlights regions of rapid intensity change and is therefore often used for edge
detection. The laplacian is often applied to an image that has first been smoothed with something
approximating a Gaussian smoothing filter in order to reduce its sensitivity to noise, and hence two
variants will be described together here. The operator normally takes a single gray level image as input
and produces another gray level image as output. The laplacian of an image f(x, y), denoted V*f(x,y), is

defined as

2 Ff(xy)  f(%y)
VA f(x,y) =
fooy)=—22"+ Y )
Commonly used digital approximations of the second order derivatives are
o’f
& =f(x+1IY)+f(x_1;)/)_2f(xx)/) (8)
o’f
and Py =f(%y+1)+f(%y—1)-2f(xy) (9)
So that VI =[f(x+1,y)+f(x=1,y)+f(x,y +1)+f(X,y=1)]-4f(x,y) (10)
This expression can be implemented at all points (x, y) in an image by convolving the image with

o 1 [o]
the following mask: , _ 4 1
o 1 (o]
An alternate definition of the digital second derivatives takes into account diagonal elements and
1 1 1
can be implemented using the mask: 1 -8 1
1 1 1

Both derivatives sometimes are defined with the signs opposite to those shown here, resulting in
masks that are the negatives of the preceding two masks. Enhancement using the Laplacian is based on
the equation

g0y)=F(x,y)+ [V (x,y)] (1)
where, f(x, y) is the input image, g(x, y) is the enhanced image, and c is 1 if the center coefficient of the
mask is positive or -1 if it is negative. Because the Laplacian is a derivative operator, it sharpens the
image but drives constant areas to zero. Adding the original image back restores the gray level image.
MEDIAN FILTER

The median filter is normally used to reduce noise in an image, somewhat like the mean filter.
However, it often does a better job than the mean filter of preserving useful detail in the image. Like the
mean filter, the median filter considers each pixel in the image in turn and looks at its nearby neighbors
to decide whether or not it is representative of its surroundings. Instead of simply replacing the pixel
value with the mean of neighboring pixel values, it replaces it with the median of those values. The
median is calculated by first sorting all the pixel values from the surrounding neighborhood into
numerical order and then replacing the pixel being considered with the middle pixel value. (If the
neighborhood under consideration contains an even number of pixels, the average of the two middle
pixel values is used.)

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 49



ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

RESULTS AND ANALYSIS

The sample real time sonar images are considered for
filtering analysis. For each filter by varying the window size, its
PSNR, execution time for computational complexity estimation
and MSE are computed. The mathematics relevant to PSNR and
MSE calculations are given below.

The peak signal-to-noise ratio (PSNR) is an important
parameter to measure the quality of the reconstructed images.
The PSNR is the ratio between the image's maximum intensity
and the mean square error of that image. The PSNR for the

resultant image of size mxn is calculated by
MAX,

PSNR=20log V"

(12)
where, MSE is the :
1T O\ s 2
Mean Square Error Z%ZZ[’(';I)—K(':I)]
o (13)

1 (i, j) and K (i, j) represent the input image and its corresponding
resultant image accordingly. Figure 2 represents the original
sonar image as input image. Figure 3 to Figure 6 represents the
corresponding output images of Average, Gaussian, LoG and
Median filters respectively.

Figure 7 to Figure 10 represents the PSNR values of all the
filters by varying the window size from 3x3 to 29x29 and are
compared for analysis which performs better for underwater
SONAR images. Here it is observed that, as the window size
increases, the PSNR values are decreases. From the Table 1, it is
observed that the maximum PSNR and minimum MSE is for
Gaussian filter. So the Gaussian filter is best suits for underwater
SONAR images.

Table 1: Comparison of PSNR, Execution time and MSE of 3x3

window size
Name of the Maximum PSNR | Execution
No filter value (dB) time (sec) MSE
1 Average filter 23.16 0.28696 17.7165
2 Gaussian filter 37.87 0.119315 3.2581
3 G’a%psls?g,:;‘]igr 23.18 0.586001 | 17.6892
4 Median filter 28.94 0.1313 9.1157
CONCLUSIONS

In this paper, the performance analysis of various spatial
filters is carried out to find out the optimum filter that suits the
underwater SONAR images denoising application. The analysis is
carried out on the real time Sector Scan SONAR images. On each
image, different window size configurations starting from 3 x 3
to 29x29 are applied and the MSE, execution time and the PSNR
values are computed for various denoising filters. As the window
size increases the execution time for filtering the image is
increasing and PSNR value is decreasing. From the results it is
found that the optimum window size configuration and the
optimum filter that gives the best execution time, MSE and the
PSNR value (37.87dB) are 3x3 window configuration and
Gaussian filter respectively.
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Figure 2. Original image

-
Figure 3. Average filtered image for
window size 3x

Figure 4. Gaussian filtered image for
window size 3x3

Figure 5. Laplacian of Gaussian filtered
image for window size 3x3

Figure 6. Median filtered image for
window size 3x3
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Figure 7. Graph between window size Figure 8. Graph between window size
and PSNR value of average filter. and PSNR value of Gaussian filter.
The max PSNR is 29.6dB at window size 3 The max PSNR is 30.26 dB at window size 3
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Figure 9. Graph between window size Figure 10. Graph between window size
and PSNR value of LoG filter. and PSNR value of Median filter.
The max PSNR is 21.6 dB at window size 3 The max PSNR is 27.82 dB at window size 3
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