ANNALS OF FACULTY ENGINEERING HUNEDOARA - INTERNATIONAL JOURNAL OF ENGINEERING Tome X (Year 2012) – FASCICULE 1 (ISSN 1584 – 2665) ^{1.} Milan KOSTELAC, ^{2.} Jovan TEPIĆ, ^{3.} Ilija TANCKOV # JUSTIFICATION OF THE APPLICATION OF TIGHTENING **ELEMENTS IN THE SHAFT- HUB JOINT** ^{1.} University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lucica 5, Zagreb, CROATIA ABSTRACT: Today, in the small-series production, a universally adopted way of joining the hubs of driving or driven components with the shaft is by using a key. In addition to the basic requirement to be fulfilled by a joint – reliable transfer of torque with or without axial and radial force – the joint has to have additional technical features (overload protection by slipping, changeable rotational direction, axial and radial adjustability, centring accuracy, radial clearance, etc.) and has to meet economic requirements. An increasing number of practical hubshaft joint applications using friction and tightening elements in particular, prove that the usage of aforementioned method is in expansion. This can be attributed to the development of innovative types of tightening elements with reduced manufacturing cost and production time. KEYWORDS: hub, shaft, frictional joint, tangential joint, tightening element #### **INTRODUCTION** Standardized methods of power transmission and motion transfer use different elements, such as keys, wedge-shaped shafts, polygonal shafts, and lateral pins to join the hub of driving or driven elements with the shaft, or make use of friction connections (cylindrical tightening connection, conical connection, tightening elements). Nowadays, the key is accepted as a universal joining method most frequently used in the production of single items and in the small-series production. A machine industry survey has shown that approximately 60% of all hub-shaft joints are based on the keys. Although the analysis of the hub-shaft joints should be impartial and objective, we cannot avoid the impact of engineering tradition. The choice of the joint type in practice is typically reduced to copying old solutions, adopting someone else's standards, using solutions without a thorough analysis or "ad hoc" solutions which are appropriate to the current technical and economic situation and to the available time. Such choice can be hard to justify because a consequence of such an impulsive approach is the fact that the designer's creativity is reduced, his/her independence is lost, and it may even create a lack of confidence [1]. The joints based on keys are often inadequate in meeting increasing demands for higher durability, material savings, energy and labor savings or assembly simplification. The keyway created on both elements of the joint reduces the load-bearing cross-section of the joint and increases the production cost. Its sharp curvatures increase stress due to the cutting effect. Thus, in order to achieve sufficient joint strength, the diameter and the length of both the shaft and the hub have to be increased. # **TECHNICAL REQUIREMENTS IMPOSED ON THE JOINT** Besides the transferable torque with or without the axial and the radial force, as one of the fundamental joint requirements, additional technical specifications and economic requirements need to be defined for each individual joint. The information collated for each proposed solution in the form of qualitative and quantitative data and features commonly yields only a subjective assessment of the joint under consideration. There is no concept of an ideal hub-shaft joint, i.e. the one in which the hub and the shaft form a unit and are manufactured as a single unit. In that case we are talking about the shaft with a transfer element. Additional technical requirements, such as the ability to cope with overload, changes in rotational direction, centering (rotation accuracy) with and without additional elements, axial and radial positioning, radial clearance, etc., are typically analyzed in conjunction with economic requirements. such as reduced weight, low production cost, easy assembly and disassembly, replacement possibilities, recyclables, etc. Empirical and/or literature-based information collated in accordance with additional requirements is often insufficient for a comprehensive analysis. In the proposed solutions that have ^{2-3.} FACULTY OF TECHNICAL SCIENCES, UNIVERSITY OF NOVI SAD, TRG DOSITEJA OBRADOVIĆA 6, NOVI SAD, SERBIA practical applications, certain features must be quantitatively described in the evaluation as "small - medium – large", "possible - conditional – impossible", "yes – no", and similar. In this way, particular joint solutions are graded by quality, thus pointing out the advantage of one solution over other potential options. As that advantage has a crucial influence on decision making, all decisions, need to be based on objective data in order to fulfill the requirements imposed on the joint. # **ECONOMIC REQUIREMENTS IMPOSED ON THE JOINT** A large number of practical decisions are based on economic factors, or in other words, on how to meet the basic requirements at a minimum cost, or how to achieve the best performance with the available means. The economic evaluation is reduced to the cost analysis as an accepted criterion [1]. The cost analysis is performed by the evaluation of manufacturing costs, the costs of joint materials and the costs of assembly / disassembly. # **MATERIAL COSTS OF JOINT COMPONENTS** The joint component parts are the main contributors to the overall cost. They include the shaft and the hub, and the transfer elements (in the case of indirect power transmission and motion transfer) as well as auxiliary structural elements (nuts, bolts, flanges, etc.). The analysis of a comparison of dimensions of the joint using the key and those of other types of joints [2,3] can show the cost of a particular material used in the joint and can help estimate potential savings. For joints with tightening elements [4], an increase in the shaft diameter increases material savings (Figure 1). Using the same principle, hub material savings are evident. However, quantitative data can only be obtained by analysing specific cases. For shaft diameters \leq 25 mm, the joints using the key can have smaller hub dimensions, and therefore reduced mass, due to the auxiliary component inserted into the hub. Figure 1. Hub and shaft material savings for different joint types As the hub-shaft joint, with or without intermediate components, is always a part of a structure, the analysis of that particular structure can identify the areas where material savings in the shaft-hub joint manufacture can be achieved. #### **QUALITY OF THE MATERIAL OF JOINT COMPONENTS** In addition to the analysis of the quantity of the materials used for the manufacture of the joint, it is inevitable to include the analysis of the quality of the materials. The quality of the material used for joint components (R_m , $R_{e(po,2)}$) has a direct impact on the joint mass reduction, and, as a result, this reduces or sometimes increases (as in the case of using unsuitable or expensive materials) the cost of the joint manufacture. Figure 2 shows relative joint material costs [5]. It can be observed that using steel alloys, such as 42CrMo4 (Č.4732) and 34Cr4 (Č.4130), or cementing steels, such as 16MnCr5 (Č.4320) and 15CrNi6 (Č.5420), results in considerably lower relative costs per unit strength compared to the construction steels, such as S235J (Č.0361) and E295 (Č.0545), and to carbon-based steels, such as C22E (Č.1330), C30E (Č.1530), etc.. As a direct consequence of using better quality materials, the mass of the hub-shaft joint component is reduced, resulting in lower overall cost. #### **MANUFACTURING COSTS OF JOINT COMPONENTS** The cost of manufacturing is determined by the technical requirements which determine the technology of production [6] and control, the number of parts to be produced in a series, as well as the ancillary expenses incurred in the product development and design, in the transport, maintenance, and depreciation of the machinery, etc. The criterion of efficient manufacturing includes the cost of material in the first place, but also the manufacturing costs of component parts, which have to be reduced within the limitations posed by Relative material strength $R_{\rm m}$,N/mm² Figure 2 - Impact of material strength $R_{\rm m}$ on the relative joint material cost the available machines and the available manufacturing capacity or by design processes (new designs or adapted designs). Expenses related to assembly and disassembly, reproducibility and recycling of the joint can only be determined indirectly from its features or from suitable analogies [7,8]. The choice of implemented production technology is directly related to the number of parts to be produced, whilst the ancillary costs are constant irrespective of the number of parts in the series. Production of a single item is the most expensive, hence it is rarely studied. Within small-series production, manufacturing costs can be significantly reduced using standardized, readily available joint components. Prices of tightening elements have been on the decrease in the past 10 years, in some cases by as much as 50 % due to the mass production and large-series production. #### **IMPACT OF DIMENSION TOLERANCES** The inner hub bore and the shaft are usually cylindrical rotating members which establish a friction joint due to the action of frictional force and/or provide the centring of joint components relative to each other. It is very expensive to produce joint components with very precise dimensions, so every designer knows that meeting close tolerances for shaft and hub bore is costly. As a result, the design process has to be reduced to the motto "as little as necessary". Research into the relation between the manufacturing costs of the hub bore and the shaft [9,10] and the achieved tolerances shows that the manufacturing costs (Figure 3) are increased by two times to 15 times (tolerance IT4) when compared to the IT11 ISO standard tolerance achieved by drilling. It is therefore necessary to analyses each individual manufacturing cost, especially the large-series production and mass-production. The cost of tighter tolerances, as a fraction of overall manufacturing costs of a joint, increases with the diameter. The tolerance demanded by the designer dictates production process, hence directly costs of the shaft and hub bore. For influences the overall manufacturing Figure 3 - Relative manufacturing costs of the hub bore and the shaft in accordance with ISO standard [7] each technological process there is a limit of achievable tolerances and surface roughness. Therefore, industry standards provide guidelines on achievable tolerances for each production line and on a set of machine tools to be used. # **IMPACT OF SURFACE ROUGHNESS** Even though there is a close link between the surface roughness and IT quality for a certain range of tolerances, the designer often stipulates unnecessarily low surface roughness or, due to his/her lack of knowledge on the final functionality, unacceptably high surface roughness. The cost of achieving a specific surface roughness is affected by the same factors as the dimension tolerance, i.e. small roughness (smoother finish) is analogous to the tight tolerance, yielding the increased manufacturing cost [11]. The finer surface finish with surface roughness of R_7 = 3.2 - 12.5 µm achieved by turning is related to a much lower manufacturing cost of joint components, whilst parts with $R_Z \ge 25 \mu m$ have a lower relative price of machining which is ≤ 1 (Figure 4). The surface roughness of parts with large dimensions does not dominate their overall cost. However, if the designer demands a specific surface treatment, the additional cost thus incurred has to be considered, irrespective of the part dimensions. #### **C**ONCLUSIONS In addition to the quantity of materials used to Figure 4-Impact of surface roughness on relative manufacture the shaft and the hub, the cost analysis manufacturing cost by turning has to include also the quality of materials used. The quality of component materials has a direct impact on the joint mass reduction and on the manufacturing cost which can be decreased or increased in some cases as in the case of using expensive and unsuitable materials. The joint manufacturing cost is also determined by technical requirements which affect the choice of manufacturing technology, assembly process, and quality control, by the number of parts in a series as well as by ancillary production costs. It has to be emphasised that due to their simplicity, cost-effectiveness and the ability to transfer larger torque (i.e. larger torque per unit mass of finished product Nm/kg) tightening elements are increasingly more often used in the single-item and the small-series production than the conventional shaft-hub joints. The decision on which joint type is to be used for each individual product rests with the designer, but economic factors (material savings, manufacturing costs, assembly and disassembly time) have to be considered. Cost reduction of up to 60 % in the manufacture of friction joints using tightening elements compared to joints established on the basis of shape is not an unrealistic prediction since the decisions on about 60 – 75 % of overall production costs are made during the design phase. ### REFERENCES - Sturm M.: "Materijalsparende Fixierung (Konstruktive Details von Welle/Nabe Verbindung)", KEM, 6 (1989), [1] - Beitz W.: "Wiesenbasierte Entscheidungsfindung bei der Auswahl von Konstruktionskomponenten am Beispiel Welle-Nabe-Verbindung", Proceedings of the 4th Interantional ASME Conference on Designe Theorie and Methodology DMT, Phonix 1992., 149-156. Ehrlenspiel K., Kiewert A., Lindemann U.: "Kostengunstig Entwickeln und Konstruiren", Springer Verlag Berlin Heidelberg New York, 1999. [2] - [3] - www.bicon.com - Ehrlenspiel K., Kiewert A., Lindemann U.: "Kostengunstig Entwickeln und Konstruiren", Springer Verlag Berlin - Heidelberg New York, 1999. Busch W.: "Relativkostenermittung von Schraubenverbindung In. Schraubenverbindungheute, VDI-Verlag, [6] - 1983., 137-142, (VDI-Berichte 478) Stoferle Th., Dilling H.J., Rauschenbach Th.: Rationale Montage Heraussforderung an der Ingenieur", VDI-Z [7] - Nr.: 117, 715-719. 1975. Gleich R.: "Targent kosting fur die Montierde Industie", Vahlen, Zugl. Stuttgart Univerisitat, Dissertation [8] 1996. - Hauschulte "Gemeinkostenvermeiden [9] Schmidt-Faber В., K.: Koch entwicklungsbegleidende Prozesskostenkalkulation", Marktnache und kosteneffizienz Schaffen, Stuttagrt - 1993. 259-274, 1993. Gotze H.: "Kostenplannung tehnischer Systeme am Beispiel der Werkzeugmaschine", Berlin, Techniche - Universitat, 1978. Lindemann U.: "Systemtechiche Betrachtung der Konstruktionprozesses unter besonderer Berucksichtigung [11] der Herstellkostenbeeinflussung beim Festlegen der Gestalt", Dusseldorf, VDI-Verlag, 1980.