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ABSTRACT: This paper aims in presenting considerations on experimental design and exposure of response surface
method with applications in a matter of optimizing the flow of an incompressible viscous fluid through an
obstructed cylindrical pipe. The results are pointed out, together with the advantages of using the response
surface method in optimization problems.
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INTRODUCTION

In a design problem or optimization, different solutions must be tested and compared. A trial or
in our case a simulation is expensive (in computation time), so a systematic and orderly method is
essential to solve the problems of design and optimization. Often engineering experimenters wish to
find the conditions under which a certain process attains the optimal results. That is, they want to
determine the levels of the design parameters at which the response reaches its optimum. The optimum
could be either a maximum or a minimum of a function of the design parameters. One of methodologies
for obtaining the optimum is response surface technique.

This paper is concerned with the method of response surface (RSM) as one approach in the
optimization methodology.

Originally, RSM was developed to model experimental responses [1] and then migrated into the
modeling of numerical experiments. The difference is in the type of error generated by the response. In
physical experiments, inaccuracy can be due, for example, to measurement errors while, in computer
experiments, numerical noise is a result of incomplete convergence of iterative processes, round-off
errors or the discrete representation of continuous physical phenomena [3, 9, 10]. In RSM, the errors are
assumed to be random.

The purpose of this research is to remove shortcomings by considering the classical method
parameters and process responses as variables subject to random errors and the use of multiple
regression and dispersion analysis of mathematical statistics to obtain the optimal parameters.

Combination of multiple regression, statistical analysis and programming dispersion of the
experiences of modern methods of experimental research results, known as response surface method
(regression functions), is applied in this work to optimize the flow of a viscous incompressible fluid
through an obstructed duct.

The paper is outlined as follows: Section 2 presents the optimization problem and the
mathematical model of the viscous flow through the obstructed duct. In Section 3 theoretical aspects
upon the response surface method are exposed. The statistical design of experiments and the analysis
of variance are presented in Section 4 and the Y
numerical results and final remarks conclude the paper
in Section 5. 0
OPTIMIZATION PROBLEM OVERVIEW

It is considered a pipe of dimensions Lx, Ly,
obstructed inside by a bar of square cross-section a,
which is crossed by a viscous incompressible fluid
(Figure 1). Due to the pipeline symmetry, only the
upper part is considered as computational domain.

Lx

Figure 1. Computational domain of the obstructed
duct
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The steady viscous flow of the incompressible fluid is governed by the Navier-Stokes equations in
two-dimensional Cartesian coordinates
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associated with the boundary conditions
Lx a a
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p(0.y)=py, p(Lx.y)=0, (19

where u(x,y), v(x,y) are the axial and cross velocity, respectively, Re is the Reynolds number defined

by relation Re = pudn™, where pis the fluid density, 1 is the kinematic viscosity coefficient and d is the
duct diameter.
The stationary laminar flow it is governed by the Hagen-Poiseuille law which gives the relationship

between volume of fluid flowing through a cylindrical tube of and pressure gradient
R

m(pl—p2 s
0, - I (kY ©)

Therefore, the viscous fluid flow volume is proportional with the pressure gradient
(pl—p2)/ Lx. We propose to determine the optimal sizes Lx and Ly of the pipeline, which maximizes

the volume flow per time unit.
RESPONSE SURFACE METHODOLOGY

Response surface methodology is a collection of mathematical and statistical techniques for
building empirical models. The objective of the RSM is the optimization of a response (output variable)
which is influenced by several independent variables (input variables), using a specific design of
experiment. An experiment is a series of tests, called runs, in which changes are made in the input
variables in order to identify the reasons for changes in the output response [1, 7].

Response surface method [4] considers the relationship between process parameters and
responses that surface features of the multidimensional space of variables. In experiments conducted
by this method, independent variables are varied simultaneously, taking a limited number of values
considered in the experiment, called levels.

With this method, although several independent variables are varied simultaneously, their main
effects and higher order, and interactions can be determined separately. Changing the independent
variables will automatically lead to a change of output. The results thus obtained can be used to
improve the performance of a manufacturing process.

The design procedure of response surface methodology involves three basic concepts:

(i) Designing of a series of experiments for adequate and reliable measurement of the response of
interest.

(i) Developing a mathematical model of the second order response surface with the best fittings.

(iii) Finding the optimal set of experimental parameters that produce a maximum or minimum value of
response.

In general, the mathematical model of a process considers its response functional relationship
between k parameters indicated by the physical reality of the process, as independent variables
X, X,,...x, and its characteristic as a dependent variable or response 1= f (x,,x,,..x, ).

We define the response y as
y=n+g¢,, with E(y)=n and Variance(y)=o"’ (3)
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where ¢, , represents the noise or experimental error observed in the response, usually considered to

be a random variable with zero mean and variance o’. Assuming that there is a deterministic
relationship f between n and x,,x,,...x, we can write

yzf(xl,xz,...x,()+gexp (4)
The surface represented by f(xl,xz,...xk ) is called a response surface.

Generally, the structure of the relationship between the response and the independent variables
is unknown. The first step in RSM is to find a suitable approximation to the true relationship. The most
common forms are low-order polynomials (first or second-order). Usually a second-order model is
utilized in response surface methodology
9
=1

9
Y(x)=By+ 2 Bx; + 2 Byxx; + By + e (5)
J=l i<j j

where ¢ is a random error. To determine the coefficients [ of the polynomial model, the most
appropriate is the method of least squares [6], which provides a minimum dispersion of determined
coefficients. The method of least squares, proposed by Gauss since the early nineteenth century, to
adjust a function of regression of experimental data, is based on minimizing the sum of the squares of
differences between variables 17, of response measured in the experimental points and the

corresponding y values calculated using the polynomial approximation determined
q
. 2
E=mm2(yl-_77,-) . (6)
i=l1

In general (5) can be written in matrix form

Y=BX+E 7)
a matrix of independent variables. The matrices B and E consist of coefficients and errors, respectively.
The solution of (7) can be estimated using the least-squares method as:

B=(x"x)" X'y (8)
where X" is the transpose of the matrix X and (XTX)i1 is the inverse of the matrix X' X .

The mathematical models were evaluated for each response by means of multiple linear
regression analysis. As said previous, modeling was started with a quadratic model including linear,
squared and interaction terms. The significant terms in the model were found by analysis of variance
(ANOVA) for each response. Significance was judged by determining the probability level that the F-
statistic calculated from the data is less than 5%. The model adequacies were checked by R’, adjusted-R’,
predicted-R* and prediction error sum of squares (PRESS). A good model will have a large predicted R?
and a low PRESS. After model fitting was performed, residual analysis was conducted to validate the
assumptions used in the ANOVA. This analysis included calculating case statistics to identify outliers and
examining diagnostic plots such as normal probability plots and residual plots. Maximization and
minimization of the polynomials thus fitted was usually performed by desirability function method and
mapping of the fitted responses was achieved using computer software such as Matlab Statistical
Toolbox.

PIPE SiZE OPTIMIZATION BY RESPONSE SURFACE METHOD
Let us consider that the parameters to be optimized have 2

values between ranges Lxe[3,5] and Ly e[1,2] respectively, and | e . .

the cross-section of the block that obstructs the fluid is a=1.2. The .

fluid element is a heat treatment oil having density p=0.897 Kg/m’ ~ e * *

and kinematic viscosity at 40° n=0.910Kg /m-s . . o ®
Using a central composite design [4] (Figure 2) value pairs were 05— - -

set to optimize parameters taken using extreme values and the .

ranges centers. These values and corresponding volume flow Figure 2. Central composite

determined by simulations based on finite element method [5] are  design used in response surface

presented in Table 1. methodology, with factors

Lx and Ly
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Table 1. The values of parameters
and values used in optimization of
experimental responses

Experiment Volume
porder Lx Ly flow, n
1 3 1.5 1.49896

2 4 1.5 2.00022

3 5 1.0 2.49967

4 4 2.0 2.00343

5 3 1.0 1.49960

6 4 1.5 2.12546

7 3 2.0 1.49923

8 4 1.5 1.99875

9 4 1.0 1.99886

10 4 1.5 2.10120

1 4 1.5 1.89475

12 5 2.0 2.49706

13 b) 15 2.49942

Table 2. Encoding of the
experimental observations

Observation X, X, n
1 X, x | n

2 x | x |7
N=13 x X! n"

ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

We consider the objective function

v =0+ Bx + Box, + fix,x, + ﬂ4x12 + ﬂsxzz +& (9)
In matrix notation, relation (9) become
T
y=[x] [Bl+e (10)

where [x] represents the vector of model parameters and their

contributions

[X]T = [1 P A R x;] (1)
and [ ] is the regression coefficients vector
[ﬂ] = |:ﬂ0 ﬂl ﬂz ﬂ3 ﬂ4 ﬂs :| (12)

Noting the corresponding observations as Table 2 and

associating each observation a vector [x]i, this design is
characterized by

[<]" % i
[x]= [T |, [Y]= yz , [E]=| 7 (13)
Y Y

[x]NT

thus applying equation (10) for all experimental observations, the algebraic system of equations in

matrix form

is obtained

Table 3. The estimated
model coefficients

Term Coef
B, | Constant -0.316905
B | Lx 0.613094
B | Ly 0.149090
S | Lx*Lx _ -0.0139613
B, | Ly*Ly  -0.0480293
B. | Lx*Ly -0.00111700

[Y]=[x][A]+[£] (14)

It is noted that the system (14) results in more equations than

unknowns, thus the error vector [E] must be minimized. Using the least
squares method, the coefficients vector [ﬂ] is determined so the sum of

the squared errors ¢, is minimized, i.e.

||[E]||:mm[‘izlg,) ()

The estimated coefficients [,B] are obtained by relation

[8]=(1x7 [x]) [xT[¥] (16)

Model coefficients, determined by experimental design program Minitab are presented in Table 3.
To validate the regression model is necessary to calculate the R’ - factor

SS
R =—"% 1
s, (17)

where the sum of squares of the residual is

and the total sum of squares

is a measure of the balance of all the observations.
regression
R?* =97.75%, value that validates the model.

The response surface that was obtained is shown in Figure 3.

For

N
_ _ 1
SST :Z(yl_ —77)2’ n :ﬁ(m +1, +...+77N)
i=1

the

model

(18)

(19)

2.5

2.0

presented was calculated 2°

15 Ly
15

10
3
4 5

We determine the coordinates (Lx, Ly) that maximizes the L

response surface using the constrained optimization Matlab code,

Figure 3. The response surface

listed in Appendix. The resulting optimal parameters are Lx =4.8579, Ly =14988.

196

Tome X (Year 2012). Fascicule 1. ISSN 1584 — 2665



ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

NUMERICAL RESULTS AND CONCLUDING REMARKS

flow

The pipe dimensions were optimized using 3 - Y
response surface method so that the flow volume - 1%
passing the obstructed duct per unit time has a ] E 1o
maximum value. The optimized flow is depicted in égg

Figure 4. The axial and the cross-section velocity -
components are depicted in Figure 5. The variation
of the wall pressure is captured in Figure 6.

Response surface method ensures the
desired optimal model with no errors and also in a
calculation time as small, independent of the
hardware that is processing. A

———— Figure 4. The flow gf the viscous fluid through
the optimized duct
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Figure 5. The axial (left) and the cross-section S~
(right) velocity components '

Using the results of numerical 0 l R 4
simulations the optimization of the size of a Figure 6. The variation of the wall pressure
pipe traversed by a viscous obstructed fluid was performed by the response surface method.

The purpose of this paper was to remove the shortcomings of the classical optimization methods
by considering parameters and process responses as variables subject to random errors and the use of
multiple regression and dispersion analysis of mathematical statistics to obtain optimal parameters.
Experimental design is currently the most modern tool used in optimization problems. This contributes
to some important clarifications on the relationship between variables, estimation connections,
checking assumptions, testing different ways of practical action, determining the optimal level of
controlled variables and model behavior in relation to the variation factors.

APPENDIX

We present in the following the code for bound constrained optimization used in the response
surface design.

Step 1: Write a file objfun.m for the objective function.

function f = objfun(x)

betao=-0.316905;

beta1=0.613094;

beta2=0.149090;

betat11=-0.0139613;

beta22=-0.048293;

beta12=-0.001117;
f=betao+betar*x(1)+beta2*x(2)+betar1*x(1)"2+beta22*x(2)"2+beta12*x(1)*x(2);

Step 2: Write a file confun.m for the constraints.

function [c, ceq] = confun(x)

% Bounded constraints

c=[3-x(1);

x(1)-5;
1x(2);
x(2)-2];

% Nonlinear equality constraints

ceq=[];
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Step 3: Invoke constrained optimization routine.

X0 = [3,1];
Ib= [3}1];
ub = [5,2];
[x,fval] = fmincon(@objfun,xo,[],[1,[],[],1b,ub,@confun)
X =
4.8579 1.4988
fval =
2.5067
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