ANNALS OF FACULTY ENGINEERING HUNEDOARA

- INTERNATIONAL JOURNAL OF ENGINEERING
Tome X (Year 2012) - FASCICULE 3 (ISSN 1584 - 2673)

" Anca Elena IORDAN

DEVELOPMENT OF AN INTERACTIVE ENVIRONMENT USED FOR
SIMULATION OF SHORTEST PATHS ALGORITHMS

" UNIVERSITY “POLITEHNICA” OF TIMISOARA, FACULTY OF ENGINEERING HUNEDOARA, ROMANIA

ABSTRACT: In this paper the author present the necessary stages in object orientated development of an interactive
environment that is dedicated to the process of acquaintances assimilation in graphs theory domain, especially for
simulation of the shortest paths algorithms. The modelling of the environment is achieved through specific UML
diagrams representing the stages of analysis, desigh and implementation. This interactive environment is very
useful for both students and professors, because computer programming domain, especially graphs theory
domain is comprehended and assimilated with difficulty by students.

KeywoRrbps: Graph, Dijkstra Algorithm, Bellman-Ford Algorithm, Roy-Floyd Algorithm, UML, Java.

INTRODUCTION

Graphs theory represents the mathematic study of abstract relationship structure between the
objects. Although graphs are themselves purely theoretical, their ability to model pair-wise relationships
in systems of arbitrary complexity yields abundant direct correspondence with numerous important
physical systems in the real world [1]. More then this, the graph structure permits a geometrical view of
them in many ways. If they are taken together, these two properties suggest that graph theory teaching
and also researching in this domain can obtain benefits using an interactive environment addressed
graphs study.

Starting with this necessity, we designed an interactive soft instrument that can be used by
students and also by graphs theory beginners, but strong enough to help the researchers in graphs
theory domain.

In educational scope, the interface and the visual components will lead the students and the
beginners in this domain to a better comprehending of the graphs theory basic concepts. The professors
can use this soft as an instrument for graphical simulation of the graphs specify algorithms. The options
to create, modify and view different types of graphs will help the students to comprehend the advanced
specify concepts of this domain.

SHORTEST PATHS ALGORITHMS - Dijkstra algorithm

Dijkstra algorithm [2], conceived by Dutch computer scientist Edsger Dijkstra in 1956 and
published in 1959, is a graph search algorithm that solves the single-source shortest path problem for a
graph with nonnegative edge path costs, producing a shortest path tree. This algorithm is often used in
routing and as a subroutine in other graph algorithms.

For a given source vertex in the graph, the algorithm finds the path with lowest cost between that
vertex and every other vertex. It can also be used for finding costs of shortest paths from a single vertex
to a single destination vertex by stopping the algorithm once the shortest path to the destination
vertex has been determined. For example, if the vertices of the graph represent cities and edge path
costs represent driving distances between pairs of cities connected by a direct road, Dijkstra algorithm
can be used to find the shortest route between one city and all other cities. Dijkstra original algorithm
does not use a min-priority queue and runs in O(|V[’).

Bellman-Ford algorithm

The Bellman-Ford algorithm [3] computes single-source shortest paths in a weighted graph. For
graphs with only non-negative edge weights, the faster Dijkstra algorithm also solves the problem. Thus,
Bellman-Ford is used primarily for graphs with negative edge weights. The algorithm is named after its
developers, Richard Bellman and Lester Ford, Jr.

If a graph contains a "negative cycle", i.e., a cycle whose edges sum to a negative value, then walks
of arbitrarily low weight can be constructed, there may be no shortest path. Bellman-Ford can detect
negative cycles and report their existence, but it cannot produce a correct answer if a negative cycle is
not reachable from the source.

Bellman-Ford is in its basic structure very similar to Dijkstra algorithm, but instead of greedily
selecting the minimum-weight node not yet processed to relax, it simply relaxes all the edges, and does
this |V | - 1 times, where |V | is the number of vertices in the graph. The repetitions allow minimum
distances to accurately propagate throughout the graph, since, in the absence of negative cycles, the

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 97

ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

shortest path can only visit each node at most once. Unlike the greedy approach, which depends on
certain structural assumptions derived from positive weights, this straightforward approach extends to
the general case. Bellman-Ford runs in O(|V|-|E|) time, where |V| and |E| are the number of vertices and
edges respectively.

Roy-Floyd algorithm

The Roy-Floyd algorithm [4] (also known as Floyd algorithm, Roy-Warshall algorithm, Floyd-
Warshall algorithm, or the WFI algorithm) is a graph analysis algorithm for finding shortest paths in a
weighted graph (with positive or negative edge weights) and also for finding transitive closure of a
relation R. A single execution of the algorithm will find the lengths (summed weights) of the shortest
paths between all pairs of vertices, though it does not return details of the paths themselves. The
algorithm is an example of dynamic programming. It was published in its currently recognized form by
Robert Floyd in 1962. However, it is essentially the same as algorithms previously published by Bernard
Roy in 1959 and also by Stephen Warshall in 1962 for finding the transitive closure of a graph.

The Roy-Floyd algorithm compares all possible paths through the graph between each pair of
vertices. It is able to do this with only O(|V]?) comparisons in a graph. This is remarkable considering that
there may be up to Q(|V|’) edges in the graph, and every combination of edges is tested. It does so by
incrementally improving an estimate on the shortest path between two vertices, until the estimate is
optimal. The complexity of the algorithm is O(n’).

STEPS FOR OF THE INTERACTIVE ENVIRONMENT DESIGN — ANALYSIS STEP

Elaboration of the interactive environment was made in concordance with a specification that
shows all desired elements. These elements contain software requirements, making difference between
obligatory and optional ones, and also contain the functionality and conditions that have to be
accomplished in order to conform to standards. For object orientated development of the application,
unified modeling language will be used. To achieve UML diagrams were used the ArgoUML [5] software.

The analysis of an informatics system
consists in drawing the use case and activity
diagrams [6]. The informatics system will be <<extond=>\\
described in a clear and concise manner by
representation of the use-cases. Each case
describes the interaction between the user and

the system. The diagram defines the system’s 1 , o

domain, allowing visualization of the size and %

scope of the whole developing process. This L. <cinclude>>/

diagram includes: ' o

O One actor - the user who is external entity -
DETERMINATION OF SHORTEST PATHS

with which the didactic game interacts.
O Five use cases that describe the functionality
of the interactive game. Figure 1. Use Cases Diagram
O Relationships between user and use cases (association relationships), and relationships between use
cases (dependency and generalization relationships).
DESIGN STEP
Conceptual modelling allows identifying the most important concepts for the interactive
environment [7]. Inheritance was not used only as a generalization device, which is when derived classes

are specializations of the base class.
Componentk] Container Window |1

B Frame
==realize==

MumeFisier

-

Ad < <extend>>

SIMULATION OF SHORTEST PATHS ALGORITHMS

" JCamponent

<<|nterrace>>

=<interface== _
17 | ActionListener FF
1

— [> Runnahle

==interface==
MouselnputListener

P

JFrame

|

|

I
==realiza= =lealiza=>

Principal }____ ‘ Algorltm | <realizeb

| |

| |

| |
1 1 | 1
. 1 1 ==reglize== | KE 1
==reglize== | 1 r——- [‘A 1
|- - | | |
[| 1 1 I

|

‘SuprafataBellman‘ ‘ SuprafataRoy |>_d ‘SuprafataDijkstra‘ ‘ ‘ Dusklra |\-"an'E>dremitate

SuprafataGraf

Figure 2. Class Diagram

98 Tome X (Year 2012). Fascicule 3. ISSN 1584 — 2673

ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

In figure 2 are presented as inheritance relationships, as realization relationships. We can observe
that the Principal and Algoritm classes inherit attributes and methods of the JFrame class, but
implements the ActionListener interface.

NumeFisier class inherits attributes and methods of the JDialog class, but implements the
interface ActionListener. SuprafataRoy class inherit attributes and methods of the JPanel class, but
implements Runnable interface, and SuprafataGraf class inherits attributes and methods of the JPanel
class and implements the MouselnputListener interface.

Between instances of the classes presented in figure 2 there are especially composition and
aggregation relationships. In the composition relationship, unlike the aggregation relationship, the
instance can not exist without the party objects. Analyzing figure 3 we can observe that an instance of
SuprafataRoy type consists in two objects of Graf type, one of Graphics2D type and the other of Thread
type.

Aggregation relationship is an association where it’s specified who is integer and who is a part. For
example, an object of Arc type or represent a part from an object of Graf type.

Sequence diagram [8] emphasizes the temporal aspect, being suitable for real-time specifications
and complex scenarios. These diagrams determine the objects and classes involved in a scenario and
sequence of messages sent between objects necessary to execute script functionality.

Diagram presented in figure 4 shows the interactions between objects that are aimed at
determining optimal path using Dijkstra algorithm. We can observe that there are interactions between
17 objects of which the object of Pincipal type is already created, and objects of Dijkstra, JButton,
SuprafataGraf, SuprafataDijkstra, Graphics2D, Graf, Varf, Arc and Thread type will instantiate during
interactions.

At the beginning the execution control is taken by Principal object that create an instance to
Dijkstra class, this object taking the control of the interactions. There will be instancing four JButton
objects, a SuprafataGraf object and a SuprafataDijkstra object. Instancing the SuprafataGraf object has
as effect creating a Graphics2D object and a Graf object. Instancing the SuprafataDijkstra object permits

to create another Graphics2D object.
Texthrea 2 MumeFisier
4 1
K

—i | 1

il Ay

Graphics2D SuprafataGraf SuprafataRoy
1 1 1 ’ 7

1
[
! ! | 1 g = 1.7
Thread 2 ‘1 Graf Warf
1
1
1.%

| 2

"
. 1
5 Yector 2.7 | varEstrernitate |
1.*
2

G

Figure 3. Class Diagram

After an event that interactions with nod of JButton object, there is transmitting the control of
SuprafataGraf object that creates an instance of the class Varf. The control is transmitted to Graf object
in order to add the object that was previously created. Control will be taken by SuprafataGraf object
that will destroy Varf object, and by interaction with Graphics2D object the graph will be redrawn. There
can be observed that Varf object life line is broken by X marking when appears the message stereotype
mark <<destroy>>.

After an event that interactions with JButton object, there is transmitting the control of
SuprafataGraf object that creates two instances of class Varf, then an instance of class Arc. The control
is transmitted to Graf object in order to add the Arc object that was previously created. Control will be
taken by SuprafataGraf object that will destroy Varf and Arc objects and by interaction with Graphics2D
object the graph will be redrawn.

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 99

100

f:Principal

k-

<<creates o |/P1:Diikstra
<=uroater» inod:JBution

ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

sscreater= [muchie: Bution
J JDrum:zJButton
<<creters y
J fiesire:JButton
<<croale=> ,
<=iteates=
<zcreatess

b1.actionPerformed{ActionEvent g

p1.actionPerformed(AdtionEvent e;

Torim:SuprafataDijkstra

[orert

1 actionPerformed (ActionEvent)

<<treaterr

<<preates> ‘u:Graphics 20
<=create=>
tmouseF o

Ig1:Graphics2D

o adaugVarih)

piactionPerfarmeiaction Event &

=<destroy-»

<<destroy>>
*paint(g)
rmousel e) |7
< ,,,,,,,,,, P [A — [|
' k INzvar
<<creafer» IMAre
==destroy==
=<destray=>
o
< ,,,,,,,,,, P [A —
=<destray=>
rpaint(o)
prim. setared. getGraf0)
=<Creates> firThread
frstartp
PR I LS
< ,,,,, (R N
prir.ung
<, RN S S — A —
prim.paint)
=TT et [T B T
<<dlestroy=»
<<destrop=>
<<destroy=>
<<destroy=>

==destroy=>

==destroy=>

<=destroy->

==desfroy=>

==destray=>

Figure 4. Sequence Diagram

Tome X (Year 2012). Fascicule 3. ISSN 1584 — 2673

ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

Appealing run() method, the execution thread will pass in running state and by interaction
between Graf object, used for memorising the optimal path, with Graphics2D object there will be
represented step by step the optimal path. Finally there will be destroyed all the created objects and

control will be taken by Principal object.
IMPLEMENTATION STEP

Component diagram [9] is similar to packages diagram, allowing visualization of how the system is
divided and the dependencies between modules. Component diagram put emphasis on software
physical elements and not on the logical elements like in case of package diagram.

The diagram in figure 5 describes the collection of components that together provide system
functionality. Central component of the diagram is Principal.class, a component obtained by
transforming by the Java compiler into executable code of the Principal.java component. As can be seen
that component interacts directly with component Fereastra.class.

Frincipal java

% Principal class

% VarfBExtremitate.class

VarEdremitate java IT

\?/ 1
0.*

R

Algoritm java Algaritm.class

1.*
[é] MumeFigier.class
0.

MumeFisier java IT

— T T

Jix

Bellman java

% Bellman.class

SuprafataBeHman.javaIT

1
%SuprafataBeHman.class
1 1

£

b '

Dijkstrajava

% Dijkstra.class

[é] SuprafataDijkstra.class

SuprfataDijkstra.java

g

1, ‘17

Roy.java

ERCRLALRE

% Roy.class
n

il

SuprafataRoy java

[é] SuprafataRoy.class
1

1 ’ 1 h

Graf java

SuprafataGraf.class

SuprafataGraf java

2
LY
% Grafclass
L_ 1 1

1.*

=

“arf java IT % Varf.clags

Arc.clags

Arc java

]
]
]
]

Figure 5. Components diagram

USER INTERFACE

The informatics system is accomplished
using the Java programming language [10].
The application can easily convert in a Java
applet.

Starting from specified requisites in uses
cases diagram (figure 1) it was designed
graphical user interface of the informatics
system. The main page of the application
contains buttons for selecting the following
options: Dijkstra algorithm simulation (figure
6), Bellman-Ford algorithm simulation and Roy-
Floyd algorithm simulation.

CONCLUSIONS

The main goal in realizing of this paper is
designing and implementation of a dynamic
interactive environment that has to lead the
user to accomplish experience in
comprehending and controlling acquaintances
in graphs theory domain and to offer efficient
and convenient access to the latest
information.

The informatics application follows these
actual problems and boards it in a new manner
using modern educational technologies.
Through the diagram representation all three

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA

A

&

&

]

St

Figure 6. Simulation of Dijkstra algorithm

.

101

ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

phases: analysis, design and implementation, the educational informatics system has been described in

a clear and concise manner. The use of the UML modelling language for the creation of the diagrams is

characterized by rigorous syntactic, rich semantic and visual modelling support.

REFERENCES

[1.] D. Bauer, H. Broersma, E. Schmeichel, Toughness in graphs — a survey, Graphs and Combinatorics, vol. 22, pp.
1-35, 2006

[2.] M. Golumbic, Algorithmic Graph Theory and Its Applications, Computer Science Interfaces Series, Springer,
pp. 41-62, 2005

[3.] J. Gross, J. Yellen, Graph Theory and Its Applications, Taylor & Francis Group, 2005

[4.] R. Diestel, Graph Theory, Springer-Verlag, Heidelberg, 2010

[5.] http://argouml.tigris.org

[6.] G.Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, Addison Wesley, 1999

[7.] M. Fowler, K. Scott, UML Distilled: A Brief Guide to the Standard Object Modeling Language, Addison Wesley,
Readings MA, USA, 2000

[8.] J. Odell, Advanced Object Oriented Analysis& Design using UML, Cambrige University Press, 1998

[9.] S.Bennet, S. McRobb, R. Farmer, Object Oriented Systems Analysis and Design, McGraw Hill, 1999

[10.] B. Eckel, Thinking in Java, Prentice Hall, 2003

JOURNAL OF ENGINEERING
I8sw: 15842665 ISSK: 15842673 |

ANNALS OF FACULTY ENGINEERING HUNEDOARA

- INTERNATIONAL JOURNAL OF ENGINEERING

copyright © UNIVERSITY POLITEHNICA TIMISOARA, FACULTY OF ENGINEERING HUNEDOARA,
5, REVOLUTIEI, 331128, HUNEDOARA, ROMANIA
http://annals.fih.upt.ro

102

Tome X (Year 2012). Fascicule 3. ISSN 1584 — 2673

