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ABSTRACT: Non-uniform grid construction for numerical solving of Navier-Stokes equations is described in the
present paper. The Navie-Stokes equations which describe hydrodynamics in the chemical reactor with a mixer are
approximated with second order of accuracy finite differences. The geometrical area is very complex because of
convex mixer corners in the flow. Finite-difference grid is constructing via adding points near the solid boundaries
of the domain, where the gradients of the velocity are high. Computational tests with two and three added points
are provided. The geometrical area and the numerical results are graphically presented.

KEywoRrbs: Navier-Stokes equations, non-uniform grid, convex corners in the flow, cylindrical reactor with a mixer,
hydrodynamics, Reynolds number

INTRODUCTION

The mechanical mixing is one of the most energy consuming operations in the chemical industry
and biotechnology. Studying the hydrodynamics of fluids in chemical reactors and bioreactors with
mechanical mixing caused the interest of researchers since the mid-fifties of the last century. The first
researches in this area were conducted in small experimental laboratory glass containers with
transparent walls and the main conclusions were made by direct observations and measurements of the
velocity field [1]. One of the pioneers in this area is the Japanese scientist Nagata. He studied the
problems of mixing of pure engineering point of view and summarize the results in sensational for its
time book "Mixing: Principles and Applications" in 1975. The rapid hydrodynamic studying of the fluid
motions in reactors with mixing was begun in the early eighties of last century, when the computer
technology became increasingly developed. Theoretical models were created and computational
experiments were conducted in parallel compared with direct observations and laboratory
experiments.

In recent years, most researchers who conducted computer simulations use the CFD
(Computational Fluid Dynamics) software packages. Using such software requires large computational
resources. Usually the calculations continue about 1000 CPU time with Sun SPARC workstation [2]. The
obtained numerical results are compared with results from laboratory experiments conducted in
parallel. There are many modern ways to experimentally determine the velocity field. Some of them are:
determining of the velocity field by visualizing particles injected into the fluid - particle imaging
velocimetry (PIV) [1,2], determining of the velocity field by laser - Doppler system velocimetry [1,2,3],
defining the velocity field by injecting different fluorescent dyes in the fluid - dye injection photographs
[1], est. In all these systems, the laboratory results are saved by laser plaques or digital cameras in a
short period of time (about 1-15 ms.). Then results are interpolated and fluid velocity is obtained
throughout the volume of the laboratory container.

Nevertheless, this engineering approach is not actually sufficient for complete investigation of
fluid motion in the reactor. The construction of proper mathematical models and numerical
investigation of hydrodynamics in such reactors with mixing via computer simulations eliminate the
need of expensive reproduction of the processes in the laboratory and gives complete data of the fluid
behavior.

MATHEMATICAL MODEL

The construction of mathematical model includes description of geometrical area, the main
equations which describe the fluid motion and the boundary and initial conditions for all unknown
functions.

Geometrical area

To construct a mathematical model for studying the process of hydrodynamics we assume that

the reactor is a cylindrical vessel with a flat bottom with a given radius and height. The reactor is filled
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with reaction mixture, which can be assumed that it is homogeneous or inhomogeneous fluid,
depending on the technology. The mixer is located on the shaft axis of the cylinder and rotates with
constant set angular velocity. The fluid motion in the reactor is caused by the rotation of the shaft with
a mixer stirring the objective of homogenization of the fluid or intensification of the processes.
Studying of hydrodynamics in the reactor 7 A zA
with mechanical mixing, we keep the hierarchy of DXy | Da
models, starting from simpler to more complex
model. In this sense, the reactor is a right circular z ZIR L
cylindrical container with a given radius R and
height Z. For reasons of convenience, we introduce
the cylindrical coordinate system\r, @,z ), which is
shown in Figure 1. The reactor is filled with reaction
mixture. We assume that it is a viscous 1 %Ll
incompressible Newtonian fluid and carried axis-
symmetric rotating. The disk has given radius R1
and thickness L1. It is placed at H1 height from the
bottom and it is rotating with the constant angular >
velocity 2 (Figure 1). R T 0 Q 1 'r
It is necessary to have a geometric and Figure 1. Sch_eme Ofthe Figure 2. Scheme of the
dynamic similarity between the studying reactors. reactor with a disc computational area
Linear characteristic dimensionless parameter is introduced to construct an adequate mathematical
model. In present investigation we choose the cylinder radius R to be the characteristic linear
dimension. Therefore, all geometric parameters become dimensionless through the following equalities:

pel oo Z R By H yy H2 s HS (1)
R R R R R R R

After using (1), the cylindrical coordinate system becomes (r, ¢, z). We do some more simplifying
assumptions - as the reactor is a cylindrical vessel and the mixer is a disk that is attached to the cylinder
axis then the geometric area has symmetry about any plane through the axis of symmetry of the
cylinder. Therefore, the movement of the fluid in the reactor can be assumed as axis symmetrical. Then,
due to axial symmetry of the flow, we assume that the unknown functions that describe the fluid
motion depend only on r and z. In this case we can consider only the half of the axial section of the
cylinder. Thus the three-dimensional (3D) geometric area in Figure 1 can be reduced to 2D
"computational" geometric area on Figure 2.

Thus for the variables r and z we have 0 <r <1and 0 <z <Z/R.
Basic equations

The equations which describe the motion of viscous fluids [5, 6] are written on the base of the
fundamental laws of conservation in Continuum Mechanics. We examine the flow in the reactor long
enough dafter the mixing process start and we look for a steady solution. Therefore, we can assume that
the unknown functions do not depend on time also [7].

We introduce the stream function y, the vorticity of the velocity @ and the momentum of the
tangential velocity M. The basic equations can be written in dimensionless form in terms of the
introduced functions as follows:
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The relationship between the first U and third W component of the velocity vector 1% (U, v, W)
and the stream function yin cylindrical coordinate system is the s following:
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In equations (2) - (5), Re= QR s the Reynolds number, & = rotV = (0,,0) is the vorticity

vector of the velocity and M = Vr is the magnitude of the momentum of tangential velocity in
dimensionless form.
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We have five equations (2) - (5) with five unknown functions - the stream function y, the vorticity
of the velocity @, the momentum of the tangential velocity M and the first U and third W component of
the velocity vector.

These equations describe the present mathematical model.

Boundary conditions

It is well known that the different fluid motions, i.e. different solutions of the Navier-Stokes
equations differ from each other because of its boundary and initial conditions as well as some dynamic
parameters of flows, such as the Reynolds number Re [4, 5, 6]. This determines the important role of
correct statement of boundary conditions for all specific hydrodynamic problems.

We examine the flow of the fluid in area with moving and non-moving solid boundaries.
Traditional boundary conditions are adhesion and “no-slip” conditions of viscous fluid on the solid non-
moving_walls of the reactor, i.e. zero boundary conditions for all components of the velocity
vectorV =0. The velocity of the fluid coincides with the linear velocity of the stirrer £ on the rotating
disk.

All solid boundaries of the area, the walls of the disc and the line of symmetry are isolines of the
stream function. Therefore, the boundary conditions for the stream function are:

W o, ©
on
where n is the normal unit vector to the boundary lines [6].

Thus formulated problem for Navier - Stokes equations solving is open, since there are two
boundary conditions for the stream function and there is no physical boundary condition [6]for the
vorticity. This leads to considerable difficulties in the system solving if the equations are treated
separately. Therefore, we set mathematical boundary conditions for the vorticity, which are calculated
from the values of the stream function near the boundaries [8]. This explains the necessity of
simultaneous solving of the equations (2) and (4).

The boundary conditions for the first U and third W components of the velocity vector, for the
stream function y and the magnitude of the momentum of tangential velocity M are given in details in
Table 1 (Fig.1, Fig.2).

w=0 and

Table 1. Boundary conditions for U, W, y, M

boundary coordinates 8 r(s)sc %ﬁem\’/) ;253; wig? tcﬁén\f)e?gé?; fusr'fg;c(l)r: W momentum M
bottom oz_<:r(i<1 U=o W=o0 w=0 M=o
top Oz_zrz/_'; U=o W=o0 w=0 M=o
wall o_<rz=_<12/R U=o0 W=o0 w=0 M=o
sy’r,:rfﬁg{ry 0 _<rz=_<OZ/R U=o W=o y=0 M=o
ABof thedisc | o< <hyg u=o W=o y=o M=r/R
P hedse | ot <hih Uso w=o v=o M=r/R
vertical wall r=RyR 2 p2
BC of the disc ’E”]’ﬁ’_‘j}z/g U=o W=o y=0 M=r'/R

FINITE-DIFFERENCE GRID CONSTRUCTION

It is known that for many hydrodynamic problems an analytical mathematical solution can be
found not always. In such a case the model system could be solved numerically [1, 2, 3, 4, 5, 6]. The
numerical solutions are “close” to the exact solution and differ from it with a given accuracy which
depends on the used numerical algorithm.

To implement some numerical algorithms for system of partial differential equations solving, first
of all this system should be transformed to a finite-difference analogue. For this purpose it is necessary
to replace the continuous arguments variation area by an area of discrete variation of the arguments,
i.e. to construct a finite-difference grid and after that all PDF equations to be transformed into algebraic
difference equations [7].

We use finite differences of second order accuracy to approximate the system.

The computational area shown in Figure 2 is very complex because of the convex corners of the
disc ABCD.

The velocity gradients near the boundaries are significant [5, 6, 7]. This is because of the rapid
reduction of the fluid velocity to zero on the solid non moving boundaries, where the conditions for
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adhesion it satisfied. There are significant changes of velocity in a small area near the boundary, which
increases the size of viscous terms in the Navier-Stokes equations. Using of an uniform grid in these
areas is not appropriate, as such a grid has to be with very small steps in both directions r and z because
of the velocity large gradients there. If the steps are very small that would lead to difficult and slow
computational process. This approach takes more CPU time and memory, and risk of quantitative
calculation errors in critical areas.

This disadvantage is overcome by constructing of a grid with irregular thickening in areas with
large solution gradients. These large gradients are expected to be around the wall, bottom and top of
the reactor and near the rotating disc, i.e. around the solid boundaries of the area where the fluid
satisfies the adhesion boundary conditions.

The non-uniform grid

Partly uniform grid consisting of rectangular meshes is constructed initially in the geometric area
on Figure 2. The steps of this initial grid are h, in r direction and h, in z direction. Points A, B, C, D, P, Q on
Figure 2 are nodes of the grid. This initial grid is shown in Figure 3, whereh_# h_. If h, = h_ then the

initial grid is uniform with square cells. zA zA
Parameters Hbr, Hbz and Hbl are M]
computing parameters, which describe the 2R e ===s===

dimensions of the disc ABCD on Figure 2.
Parameter Hbr describes the radius of the
disk. Parameter Hbz and respectively Hbl
describe the height of the disc place from
the bottom of the reactor and its
thickness. Thus, the bottom corner of the  Hbz+HbI 3 Hbz+Hbl‘% £
disk B is denoted by (Hbr, Hbz), and the Hbz Hbz §
upper corner of the disk C is denoted by
(Hbr, Hbz + Hbl).

Then, each interval of the initial grid,
which is neighboring to some of the solid
boundaries of the area, is divided into two

equal subintervals with step h/2 in r J | !

<€

direction and h,/2 in z direction. After that, 0 Hbr Ir 0 Hbr 1 rIN]
each subinterval, which is neighboring to  Figure 3. Initial uniform grid Figure 4. Non-uniform grid
the solid boundaries of the area, again is with n = 2 added points
divided into two equal subintervals with steps accordingly h,/4 and h,/4, etc.

All intervals of the initial grid, which are neighboring to the lower corner (Hbr, Hbz) and the upper
corner (Hbr, Hbz + Hbl) of the disc is divided equally in both directions r and z. Thus, the grid has
received irregular thickening around the convex corners of the disc.

We denote by n the number of points added in any interval of the initial grid in its division of the
subintervals. The number of points added in all intervals is equal for all border areas. When n = o,
obviously, in computational geometry area we have the initial grid. For example, if n = 2, then the
number of points added in the direction r is 3n, because we have two points added near the vertical wall
of the cylinder, two points added on the right side of the vertical wall BC of the disc and two points
added on the left side of the vertical wall BC of the disc. The number of points added in the z direction is
6n, because we have two points added to the bottom boundary of the area, two points added to the
top boundary of the area, two points added above and below the lower wall AB of the disc, and two
points added above and below the upper wall CD of the disc. Around the axis of the cylinder is not
thickening of the grid, because there is no solid boundary and therefore no condition of adhesion of the
fluid. Conditions for symmetry are set there [6].

Finally we denote by N the number of all points in r direction, respectively, with M the number of
all points in the z direction of the resulting non-uniform grid. So, this non-uniform grid constructed with
n =2 added points is shown on Figure 4.

The constructed grid can be modified as the number n of added points increases in critical areas -
near the disc and near the reactor walls.

NUMERICAL TESTS AND RESULTS

Numerical tests with n = 2 and n = 3 added points in critical areas near solid boundaries are
provided. The Reynolds number Re is chosen to be Re = 1000. Cases with different steps of the initial
uniform grid are examined: h, = h, = 1/32 and h, = h, = 1/64. The isolines of stream function are obtained
and graphically presented in all cases on Figure 5.a,b and Figure 6.a,b.

Values of stream function isolines for all four cases are: *0,00015096; +0,00041035; +0,0011154;
+0030321; 0,008242. The positive values of stream function are observed in lower vortex fluid structure
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and the negative values are observed in upper vortex fluid structure. There is symmetry with respect to
the disk level between both structures in all four cases. We denote by (r'mawZmax) the center of lower
vortex fluid structure and by (rmin, Zmin) the center of upper vortex fluid structure.

Table 2. Coordinates of fluid vortex structure

1/32 1/64
rmgx I'min ngx Zmin rmgx I'min ngx Zmin
2 points added 0.75 0.75 1.21875 1.78125 0.765625 0.76563 | 1.21875 1.78125
3 points added 0.78125 0.78125 1.21875 1.78125 0.765625 0.76563 | 1.1875 1.8125
25F
2k
o 15
1F
o0&k
o

Figure 5. Isolines of stream function. a) 2 points added

for results with grid steps 1/32 and 1/64; b) 3 points
added for results with grid steps 1/32 and 1/64
There is a displacement of centers of
vortex fluid structures in r direction when the
step of initial uniform grid is 1/32 and in z
direction when the step of initial uniform grid is
1/64. This fact is due to the reduction of grid
steps by half and, therefore, the refining of the
non-uniform grid.
Sections through the vortex fluid centers
for the result with grid step 1/32 and 1/64 with 2
added points are shown on Figure 7. These
sections are made on level r = 0.75 in r direction
(Figureza) and z = 1.21875 for lower structure
(Figurezb), respectively, z = 1.78125 for upper
structure (Figureyc) in z direction.

0on

Figure 6. Isolines of stream function
a) 2 and 3 points added for results with grid steps 1/32;
b) 2 and 3 points added for results with grid steps 1/64
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Figure 7. Sections through the centers of vortex fluid
structures 1/32 and 1/64 - 2 points added

Sections through the vortex fluid centers for
the result with grid step 1/32 and 1/64 with 3 added
points are shown on Figure 8. These sections are
made on level r = 0.78125 in r direction (Figure8a)
and z = 1.21875 for lower structure (Figure8b),
respectively, z = 1.78125 for upper structure
(Figure8c) in z direction.

Table 3. Difference in percents

0 1 0011
0012 i s 1 f

Figure 8. Sections through the centers of vortex fluid
structures 1/32 and 1/64 - 3 points added
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2 points added 3 points added
(Figure 7) (Figure 8)
LI»)Dositive 5.52% 2.63%
negative 538% 1.61%

We denote by solid line the result with grid
step 1/32 and with point line the result with grid
step 1/64, respectively.

151



ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

Differences between these results are given in percents in Table 3. The maximum value of these
differences is calculated in follow norm:

l//positive(negative) -

Vi~V
1/64 1/32 %

Visea

Obviously, from Table 3 follows that the best results are obtained when the grid steps of the
initial uniform grid are h, = h, = 1/64 and n = 3 added points in boundary areas.
CONCLUSIONS

Mathematical model for investigation of fluid dynamics in cylindrical tank reactor with
mechanical mixing is described. The Navie-Stokes equations are approximated with second order of
accuracy finite differences. Non-uniform grid construction for numerical solving of these equations is
provided via adding points near the solid boundaries of the domain, where the gradients of the velocity
are high. Computational tests with two and three added points are made. The geometrical area and the
numerical results are graphically presented.

The increasing of number of points near solid boundaries of the domain does not lead to
significant increasing of CPU calculation time. There is a good agreement between the scheme accuracy
and the available computing resources.
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