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ABSTRACT: This paper reports a numerical method to compute eigenvalue problems arising in hydrodynamic
instability problems. An L — projection type algorithm is developed assessing both analytical methodology and
implementation using symbolic and numerical conversions and applied to a particular case of the trailing vortices
developed by delta wings aircrafts. The results of the swirling system instability are pointed out, together with the
advantages of using the algorithm in flow control problems.
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INTRODUCTION

Swirling flows behavior has long been an intensive subject of research. The amount of
computational resources required to accurately simulate swirling systems is huge, so a complementary
stability analysis is a critical requirement to predict the flow dynamics. Pozrikidis [10] offer an
introductory course in fluid mechanics, covering the traditional topics in a way that unifies theory,
computation, computer programming and numerical simulation. Resiga et al. [12] carried out an
experimental and theoretical investigation of the processing helical vortex developed at the outlet of a
Francis turbine runner, in order to elucidate the causes of a sudden drop in the draft tube pressure
recovery coefficient at a discharge near the best efficiency operating point.

The objective of this paper is to present new instruments that can provide relevant conclusions on
the stability of swirling fluid systems assessing both an analytical methodology and numerical methods
for a spatial stability investigation of the bending modes [1].

The mathematical model governing the linear spatial stability of the swirling fluid system,
corresponding to the values of tangential wavenumber m =1, in operator form is
d

Al(k,F,G,H,P):d—(rG)+krF+G+mH, (1)
r
A, (k.F.G.H.P)=kUG -G+ VG 2 _d p ®)
r r dr
A, (k.F,G.H P)=kHU —~ Ho+ "W + P]+ "% 6 L, (3)
r r r
A, (k.F.G.H,P)=kFU - Fo+ ™7 +GdiU+kP, 4
r r

where {F,G,H,P}(r) represent the complex amplitudes of the perturbations, k is the complex axial
wavenumber, m is the integer tangential wavenumber, @ represents the temporal frequency, U and
W represent the axial and the tangential velocity, respectively, both depending only on the radial
coordinate r.

For a given real w, the system (1)-(4) is equivalent to the complex eigenvalue problem

A=A, =A;=A,=0 (5)
on the domain (0,7,,, ) together with the boundary conditions in axis origin
H+G=0, F=P=0 (6)
and the wall boundary conditions
Woall _pi_ G-, (70)
vall
rwallH(kUrwall - w) tHW, , £P=0=0, (7b)

ot F (KU oy — @) £ FW, +kr, ,P=0. (7¢)

wall rwall wall
where U, , and W, are the axial and the tangential velocity respectively, calculated at domain limit
r,., and prime denotes the differentiation with respect to the radius.
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The hydrodynamic stability model developed in the forthcoming sections of this paper involves
spectral differentiation operators derived by means of shifted orthogonal expansions of the
perturbation field. The hydrodynamic model presented in Section 2 is developed using an
L’ — projection method with operator scheme. The sophisticated boundary conditions motivated the
use of this method, suitable for non-periodic problems with complicated boundary conditions.

Dongara [6] used the Chebyshev tau method to examine in detail a variety of eigenvalue problems
arising in hydrodynamic stability studies, particularly those of Orr-Sommerfeld type. The orthogonality
of Chebyshev functions was used by Bourne [4] to rewrite the differential equations as a generalized
eigenvalue problem, assembling a very efficient projection based technique.

The classical approaches imply a transformation of the physical domain onto the standard interval
for the definition of the Chebyshev polynomials. For the approach presented in this paper, instead of
using classical Chebyshev polynomials, we used shifted Chebyshev polynomials, directly defined on the
physical domain of the problem, preserving the orthogonality properties detailed in Section 2.1. The
numerical algorithm was developed to work automatically for any number of expansion terms, using
symbolic and numeric conversions, the implementation technique being detailed in Section 2.2. In
Section 3 the algorithm is validated upon the model of a trailing vortex. An error analysis is performed in
Section 4 and the algorithm is efficiently improved by a numerical procedure for eliminating the
spurious eigenvalues form the hydrodynamic spectra. The main results of the paper are summarized in
Section 5.

L* - PROJECTION ALGORITHM FOR BENDING MODES - Methodology

Following [4] the eigenvalue problem is transformed into a system of linear equations describing
the hydrodynamic context for the cases m =*1.

The difference between the classical tau method and the modified version proposed here is given
by the selected spaces involved in the approximation process. An appropriate solution is sought in the
truncated Chebyshev series form

(F’G’H’P)ZZ(f}c’gk’hk’pk)'T:! (8)

k=1
with f,.g,.h.p,.k=1.N the sets of expansions coefficients to be found. The tau method is an
algorithm implying in the first step expanding the residual function as a series of shifted Chebyshev
polynomials.

Since the range [0,r,,,] is more convenient to use than the standard definition interval of
classical Chebyshev polinomials [—1,1 to discretize our hydrodynamic stability problem, where r, ,
represents the radial distance to the wall of the computational domain, we map the independent
variable r €[0,r,,, ] to the variable & €[-1,1] by the linear transformation

5 2rrwall -1 = r= rwall (5 + 1)2_1 ‘ (9)
The shifted Chebyshev polynomials of the first kind T, (r) of degree n—1in r on [0,r,,,] are

> Twall
given by
T;:(r):]—;r(f) (2rrwall 1)' (10)

The shifted Chebyshev class is orthogonal in the Hilbert space L., (Or ) weighted by

wall

~1/2-1 . .
w(r)= (1 (2rrwa,l 1)) . They have the next orthogonality properties

(7,,7,) =0, n#m, n,m=1.N, (1)
- 2 if n=1
(7—;1 ’7;1 ) = rwallz’ ﬂ’ = U(‘ " Y (12)
2 4 if n=2.N

with respect to the inner product (u,v) = J wuv dr.
0
The differential model is reduced to a finite dimensional algebraic system in the expansion
coefficients only by imposing the condition that each equation of the system to be orthogonal with
respect to the inner product (A T, ) , i=1.4, j=0,.,N-2 in the Hilbert space L. (0,r,,). We
obtain a set of 4(N 2) linear equattons The eight remaining equations are provided by the boundary
conditions applied as side constraints.

Introducing the notations

I =(F WO TT) L d = (oW )T T (13)
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with (d) the derivation order, the first truncated 4(N —2) equations of the hydrodynamic stability
model become

N N 2 1
kZ( U100)+g1 Twan€ 18— ,1100+Z (] : 22 iroo | T

J=1 rw all n

wall ’:. *1
N 2 P 1 2
Z (’{ / Z (215100 ) + [tlljl()() +mhr,,,c=0, (14)
j=4 wall | r=j-1

je Jodd

2
ng] joro — W&l wallc+ng, ii- 110+2Zh ii-110 -p— A, -

Jj=1 Jj=1 wall

N 2 1 Y 2(j—1 2
S p, HI7D 224 235, 207V0 S (24 )4 4, | =0, (15)
J :413 wall rj 1 j =4 wall r,:/d ;1
kZh 110 a)Zh y100+mzh 11010+ mpr, mlzc'*'zg,( y010+1Zn)_0’ (16)
k(ijlgolo +p; rwalch @ J; V€ + meinjW—IIO + Zgjlijl'/()ll =0, (17)
j=1 J=1 J=1

x/2, i=1

z/4, i=2.N-2
(N -2)x(N-2) matrix, with 4, =r,,7/2, 4, =r /4 m=2.N-2,4, =0, m#n. Similarly, we
translate the boundary conditions in linear equations that complete the system.

For the case m==%1 that we investigate here, the boundary conditions provide the seven
equations set:

for i=1..N -2, where the number c being defined as c:{ and AeM, , is square

k+1

i k+1 i k+1 (18)
ZI: k+1 ZI:

0, (19)
N
ng =0, (20)
1
1 N
kak +—th—0 (21)
wal/ 1
_ N N _ 2 N _ 2
%zhﬁpziJrzpkz(k Y, 22 +2pk2(k D 22“ =0, (22)
rwall 1 rwall . 3l“ wall /’k:e/;] P 4 wall r fkﬁl
N iW N 1 N
kUwalthk +[—”””—wj2hk i_zpk =0, (23)
1 rwall 1 rwall 1
i wall N
wal/ka"'zpk P - ka:O, (24)
wall 1

For this case, the additional relation in obtained from the second equation of the mathematical
model (2), taking the inner product (/\2,T;_1 )w

The eigenvalue problem is written as a system of 4N equations with the matrix formulation
kM, s=Ms, ;:(7,5,2,;), with *=(*%,..,%,), *=f,g.h.p.

The method has the obvious advantage that the highest degree of the Chebyshev polynomials

multiplying the residual in the method inner-product is only N —2.
IMPLEMENTATION TECHNIQUE USING SYMBOLIC AND NUMERIC CONVERSIONS

The recurrence relation for T, has the form

*

T: (r) z(zrrwall 1)']—:—1(")_];,_2 (r),n:3,4,... (25)
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* * 2 .
in which the initial conditions are T, (r)=1T, (r):—r—l. The use of a recurrence relation

wall

significantly increases the elapsed time to generate the shifted Chebyshev polynomials. To improve the
performance of the numerical algorithm, we introduce in our code the equivalent polynomial relation

n—1 n-1

T (r)==||r+ (r) -1 +|r= (r) -1 , =2, 1 (26)

to automatically generate the shifted Chebyshev polynomials {Tn (é)}nz] on [0,7,,]-

A modified Chebyshev-Gauss grid = = (5/. )1 _, in [-1.1] was constructed
E <j<
& :cos[ﬁ—i-]\{”lj,fjﬂ e[—l,l],j:O..N—l, (27)

mapped into the physical range of our problem by the simple linear transformation
r=ra(&+1)/2,i=1.N.

The collocation nodes clustered near the boundaries diminishing the negative effects of the
Runge phenomenon [5]. Another aspect is that the convergence of the interpolation function on the
clustered grid towards unknown solution is extremely fast. The numerical algorithm was developed to
work automatically for any number of expansion terms, using the routines of a high level language such
Matlab.

Using the symastring [15] function the symbolic integrands are converted into a Matlab equation
strings.

The symbol @(x) is concatenated to the integrands by using the Matlab strcat [16] procedure and
the integrals are delivered as Matlab functions by eval [17] function.

The integrals are evaluated on the physical domain [0, r,,, | using quad [18] Matlab function that
numerically evaluates the integrals using an recursive adaptive Simpson quadrature.

We list in Appendix the code sequences for generating the inner products I;]k,d.

The generalized eigenvalue problem was solved during numerical simulations by an Arnoldi type
algorithm implemented in the sptarn [19] Matlab’s procedure.

The application returns an acceptably accurate approximation of the spectrum and relevant
information on perturbation amplitudes for stable or unstable modes, the maximum amplitude of the
most unstable mode and the critical distance where the perturbation is the most amplified.

NUMERICAL RESULTS OF THE INSTABILITY INVESTIGATION

The basic flow under consideration for the validation of the proposed methods is the Batchelor
vortex case or the g-vortex [2] that trails on the tip of each delta wing of the airplanes. The properties
of the Batchelor vortex were pointed out in [9] using a shooting method. In order to compare our
results with the ones from [9] numerical evaluations of the axial wavenumber k of the most amplified
perturbed wave, obtained for various values of the spectral parameter N. In Table 1 these values are

presented in comparison with the ones  rgpje 1. Comparative results of the most amplified spatial wave

from Olendradru et al. [9] and the ones of the Batchelor-vortex:
obtained using the collocation POD eigenvalue with largest imaginary part k. = (k ,k.).
(Proper  Orthogonal = Decomposition) o | o—
method in our previous investigation [3]. Shooting method [9]
The numerical results obtained by
; k, =(0.6,0) | k., =(0.454,-1.276)

collocation are better, however, the = POD colI({)Vcation B
projection method allowed us to — —
investigate the hydrodynamic models ke, _(0'5611’0)2 |,k"h_(0'76;42’_0'33722)
with sophisticated boundary conditions. L - Projection metho

The figure 1 illustrate the behavior k, =(0.49,0) | k, =(0.57,21.358)

of the perturbation amplitudes for bending modes, computed with the critical axial wavenumbers
listed in Table 1, in comparison with the results obtained in [9].

Following Tadmor [13], when differencing analytic functions using Chebyshev pseudospectral
methods, the error committed is expected to decay to zero at an exponential rate. The convergence
behavior of the algorithm with respect to the number of expansion terms is shown in Table 2 in
compdrison with ones obtained using the radial boundary adapted technique in our previous
investigations [3].

170 Tome X (Year 2012). Fascicule 3. ISSN 1584 — 2673



ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

1.0 1.0

e Lz—projection |F|
_____ — 12 s S % ——— L’projection |F|
o L°-projection |G| P Q s Proj

0:8 v T L’-projection [H| 08 1 — —— L -projection |G|
—————— L’projection |H|

0.6 1 |

] )
< =
= =
£ £
g E
S 0.6 A 3 o
= 89 i —©°— Olendraru et al. |F| o —°— Olendraru et al. |F|
\ sndraru e
E \ \\ —=— Olendraru et al. |G| g —v—— Olendraru et al. |G|
g 0.4 1 BN -8 Olendraru et al. [H] g 0.4 1 Olendraru et al. [H|
= N =
5 \ o =
L 0.2 1 \ \ S 0.2
2 S
= - €3] )
0.0 —— T === 0.0 i o : E——
0 1 2 3 4 0 1 2 3 4 5 6
a Dimensionless radius b Dimensionless radius

Figure 1. Absolute values of eigenfunction amplitudes computed at:
am=1,a=0,¢g=0.7, ©=0.0425, k, = (0.49,0) using N =7 expansion terms.

b) m=-1,a=-1.268, ¢=0.6, ®=-0.78, k,, = (0.57, —1.358) using N =8 expansion terms.

; : Table 2. Comparison of the convergence behavior
Clearly th(_e numer:ca{ computation costs were of the algorithm assessing POD collocation
less expansive in the projection method approach method and L* - projection method

since the number of terms in the approximations was N |
significantly reduced. In fact, in comparison with the
boundary adapted collocation method this number
wdas more than twenty times reduced. In consequence,

Axial wavenumber Fk ,
POD collocation [3]
50 | 0.683678763452345-0.314534285467895i

110 ] 0.761672356543287-0.324782356487634i

with a reduced by far computational time, we can _
obtain accurate results in an acceptable agreement 130 | 0.763782346791254-0.328723914726345i

with existing ones. 165 | 0.761466589641356 -0.337228396511943

ERROR ANALYSIS AND ELIMINATING THE SPURIOUS L’ - Projection
EIGENVALUES 0.325249174525684 —1.084625097561478i

~N ||

efficient technique, the inclusion of the boundary 0.551854623988265—1.371519652384657i
conditions as equations in the system of the 8 0.570546235874152 —1.358152468512479i
generalized eigenvalue problem have been observed to be one cause of spurious eigenvalues.

The spurious eigenvalues, which are not always easy to identify, may lead one to a false
conclusion regarding the stability of the fluid system, thus the elimination of them is of great
importance. These are values returned by the algorithm which do not satisfy the eigenvalue problem.
The spurious eigenvalues problems have been the attention of much study recently. Gardner et al. [7]
and McFadden et al. [8] describe the tau methods to avoid spurious eigenvalues and in Dongara [6] the
occurrence of the spurious eigenvalues is assessed in application to the Benard convection problem.

We implement in our numerical procedure a code sequence that identifies if an eigenvalue of the
spectra is spurious or not. First the algorithm provides the entire spectra, then calculates the residual
vector of the eigenvalue problem

E'=k-T-v=¥-v, §=(7,§,Z,E)T (28)
with
(Fog ) =((AH Al (o) (29)

for each eigenvalue of the spectra.
1.2e-11 30
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Figure 2. Residual of the eigenvalue problem and corresponding histogram
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A true value of k must satisfy the eigenvalue problem. We evaluate the L’ norm of the vector
with respect to a given tolerance ¢ . If the condition

(Zabs(Ek )2)1/2 > (30)

holds, the eigenvalue k is declared spurious and discarded form the spectra. Figure 2 presents the
residual of the eigenvalue problem, solved using the QZ algorithm implemented in the high level
computing platform Matlab and the corresponding histogram.

APPENDIX

Table 3. The function policevs.m generates symbolically the n" Chebyshev polynomial defined on domain [O, VWH] .

function Tc1 = policevs(N1,rmax1)
syms x N rmax
Tc1=((2.*x./rmax-1+sqrt((2.*x./rmax-1).72-1) ).A(N-1) +...
(2.%x./rmax-1-sqrt((2.*x./rmax-1).42-1)).N(N-1))./2;
Tc2=subs(Tc1,N,N1); %replace N by N1
Tc1=subs(Tc2,rmax,rmax1); %replace rmax by rmax1
Examples:
>> policevs(1,3)
ans =1
>> policevs(2,3)
ans = 2/3*x-1
>> policevs(3,3)
ans = 1/2%(2/3*x-1+((2/3%x-1)"2-1)"(1/2) ) "2+1/2% (2/3% x-1-((2/3% x-1)"2-1)(1/2) )2
>> policevs(4,3)
ans = 1/2%(2/3*x-1+((2/3*x-1)"2-1)\(1/2))"3+1/2%(2/3* x-1-((2/3*x-1)"2-1)"(1/2))"3
>> policevs(s,3)
ans = 1/2%(2/3*x-1+((2/3%x-1)"2-1)"(1/2) ) *4+1/2%* (2/3%* x-1-((2/3%* x-1)2-1)N(1/2)) "4
Table 4. Functions to generate symbolically the integrands

Integrals: U(r)-T, (r)-Tp(r)-w(r)

function Tmn=produsJ(M1,N1,rmax,q)

syms x
Tx=policevs(N1,rmax); Ty=policevs(M1,rmax);
W=1./sqrt(1-(2.*x./rmax-1).72);
U=a+exp(-(x."2)) ;
Tmn=U.*Tx.*Ty.*W,;

Integrals: r*W (r)-T, (r) T, (r)-w(r)

function Tmn=produsK(M1,N1,rmax,q)

syms x
Tx=policevs(N1,rmax); Ty=policevs(M1,rmax);
W=1./sqrt(1-(2.*x./rmax-1).12);
Wsupr=q.*(1-exp(-(x.72)))./(x."2);
Tmn=Wsupr.*Tx.*Ty.*W;

Integrals: r-U(r)-T, (r) T (r)-w(r)

function Tmn=produsL(M1,N1,rmax,q)

syms x
Tx=policevs(N1,rmax); Ty=policevs(M1,rmax);
W=1./sqrt(1-(2.*x./rmax-1).12);
rU=x.*(a+exp(-(x."2)));
Tmn=rU.*Tx.*Ty.*W;

Integrand: W (r)-T, (r)- Ty (r)-w(r)

function Tmn=produsM(M1,N1,rmax,q)

syms x
Tx=policevs(N1,rmax); Ty=policevs(M1,rmax);
W=1./sqrt(1-(2.¥x./rmax-1).72);
Ww=q.*(1-exp(-(x."2)))./x;
Tmn=Ww.*Tx.*Ty.*W;
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Integrals: r-W'(r)- T (r)- T (r)-w(r)
function Tmn=produsO(M1,N1,rmax,q)
syms x
Tx=policevs(N1,rmax);Ty=policevs(M1,rmax);
W=1./sqrt(1-(2.*x./rmax-1).22);rWder=x.*(q.*( 2.*exp(-(x."2))+( exp(-(x."2))-1 )./(x."2)
)i
Tmn=rWder.*Tx.*Ty.*W,
Integrals: U'(r)- Ty, (r)-Tp (r)-w(r)
function Tmn=produsP(M1,N1,rmax,q)
syms x
Tx=policevs(N1,rmax); Ty=policevs(M1,rmax);
W=1./sqrt(1-(2.*x./rmax-1).72);
Uder=(-2.*x.*exp(-(x."2)));
Tmn=Uder.*Tx.*Ty.*W;
The integrals

wall . Tvall . Twall W . .
1= [ rT' T war Jy= [ UT'T wdr K,j=j7T,Tjwdr
0 0 0
L= [ rUL' T war M= [ WI'T)wdr O, = [ W' T'T wdr
0 0 0

Nyall

P=[U'TTwdr
0

are numerically evaluated by means of function integrala.m, given in Table 4.
Table 4. Function integrala.m.
function valoareint = integrala(functie,lim1,lim2)
tt=symastr(functie);
f=strcat('@(x)', tt);
f=eval(f);
valoareint=quad(fn,lim1,lim2);
The results are retained in seven square N x N matrices. (see Table 5).
Table 5. Sequence for construction of the evaluation matrices.
I=zeros(N); J=zeros(N); K=zeros(N); L=zeros(N);
M=zeros(N); O=zeros(N); P=zeros(N);
fori=t:N
for j=t:N
I(i,j)=integrala(produsl(i,j,rmax),o0,rmax);
J(i,j)=integrala(produsJ(i,j,rmax,a),0,rmax);
K(i,j)=integrala(produsK(i,j,rmax,q),0,rmax);
L(i,j)=integrala(produsL(i,j,rmax,a),0,rmax);
M(i,j)=integrala(produsM(i,j,rmax,q),0,rmax);
O(i,j)=integrala(produsO(i,j,rmax,q),0,rmax);
P(i,j)=integrala(produsP(i,jrmax),0,rmax);
end
end
CONCLUSIONS
This paper reports a numerical spectral approach based on shifted Chebyshev polynomials for
numerically solving hydrodynamic eigenvalue problems with sophisticated boundary conditions.
Numerical results showed that the use of this method improved the computational time and the
obtained critical values of the eigenparameter involved are fairly accurate. The numerical results have
been compared with other existing spatial investigations [3] and [9]. The collocation method proved to
be more accurate, however the projection method was less expensive with respect to the numerical
implementation costs, i.e. numerical results were obtained for a much smaller number of terms in the
discretization. The results are very useful not only from their numerical values point of view, but also for
their physical interpretation in fluid dynamics in flow control problems.
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