ANNALS OF FACULTY ENGINEERING HUNEDOARA

- INTERNATIONAL JOURNAL OF ENGINEERING
Tome X (Year 2012) - FASCICULE 3 (ISSN 1584 - 2673)

" Anca Elena IORDAN

A COMPARATIVE STUDY OF META-HEURISTICS METHODS FOR
TRAVELLING SALESMAN PROBLEM

" UNIVERSITY “POLITEHNICA” OF TIMISOARA, FACULTY ENGINEERING OF HUNEDOARA, ROMANIA

ABSTRACT: The paper presents a simulation study of the usefulness of a number of meta-heuristics used as
optimization method for traveling salesman problem. The three considered approaches are outlined:
Neighborhood Search, Hill Climbing and Simulated Annealing. Using a purpose-developed computer program,
efficiency of the meta-heuristics has been studied and compared. The modeling of the environment is achieved
through specific UML diagrams representing the stages of analysis, design and implementation. Implementation of
informatics system is realized in Java programming language.

Keyworps: TSP, Neighborhood Search, Hill Climbing, Simulated Annealing, Java

TRAVELING SALESMAN PROBLEM

The traveling salesman problem is a well known optimization problem. Optimal solutions to small
instances can be found in reasonable time by linear programming. However, since the TSP is NP-hard, it
will be very time consuming to solve larger instances with guaranteed optimality. Setting optimality
aside, there’s a bunch of algorithms offering comparably fast running time and still yielding near
optimal solutions.

The traveling salesman problem is to find the shortest Hamiltonian cycle [1] in a graph. This
problem is NP-hard and thus interesting. There are a number of algorithms used to find optimal tours,
but none are feasible for large instances since they all grow exponentially.

In traveling salesman problem, we have a set of N cities C={C, G, ..., C,} and a set, E, of routes
connecting the cities with one another. In other words, we have a full connected graph G(C, E), where C
is the set of nodes and E={E;}, i=1,2,...,N, j=1,2,...,N, i#j, is a set of edges. Each edge E; (connecting nodes
G and C) has a measure d;; - the distance between cities C; and C,. the task is to find the shortest route
between all the cities, assuming that each city has to be visited exactly once.

In mathematical terms, TSP is defined as a problem of finding the minimal-length Hamiltonian
circuit is the sum of distances d;; of all edges E;;belonging to the tour.

META-HEURISTICS METHODS - Neighborhood Search Method

We are given an instance | of a combinatorial optimization problem where X is the set of feasible
solutions for the instance (we write X(I) when we need to emphasize the connection between instance
and solution set) and ¢ : X -> R is a function that maps from a solution to its cost. X is assumed to be
finite, but is usually an extremely large set. We assume that the combinatorial optimization problem is a
minimization problem, that is, we want to find a solution x* such that c¢(x*) < c(x), Vxe X .

We define a neighborhood of a solution x € X as N(x) c X. That is, N is a function that maps a
solution to a set of solutions. A solution x is said to be locally optimal or a local optimum with respect to
a neighborhood N if c(x) < c(x’),Vx'e N(x). With these definitions it is possible to define a
neighborhood search method [2].

The algorithm takes an initial solution x as input. It computes x' = arg min ,r_ v,y {c(x")}, that is, it
finds the cheapest solution x’ in the neighborhood of x. If ¢(x’) < c(x) then the method performs the
update x = x’. The neighborhood of the new solution x is searched for an improving solution and this is
repeated until a local optimum x is reached. When this happens the method stops. The algorithm is

denoted a steepest descent method as it always chooses the best solution in the neighborhood.

A simple example of a neighborhood for the TSP is the 2-opt neighborhood which can be traced
back to. The neighborhood of a solution x in the 2-opt neighborhood is the set of solutions that can be
reached from x by deleting two edges in x and adding two other edges in order to reconnect the tour.
Hill Climbing

Hill Climbing [3] can be described as a method to find a solution of a problem which is, like the
name imply, hill climbing. To be more precise, when you climb a hill, you will always go from lower
ground to higher ground, not other wise, just like that, a hill climbing will always try to find a better
alternative to reach a solution. In HC, the method will generate several states from an initial state, and
then it will analyze all the alternatives, and find the best one. After that, it will move to that state, the

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 243

ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

same thing happen to that state, until either the solution is found or there’re no better alternatives that
is generated (in this case, the current state is assumed as the solution).
Simulated Annealing

A hill-climbing algorithm that never makes "downhill" moves towards states with lower value (or
higher cost) is guaranteed to be incomplete, because it can get stuck on a local maximum [4]. In
contrast, a purely random walk-that is, moving to a successor chosen uniformly at random from the set
of successors-is complete, but extremely inefficient. Therefore, it seems reasonable to try to combine
hill climbing with a random walk in some way that yields both Simulated Annealing efficiency and
completeness. Simulated annealing is such a method.
DEVELOPMENT STAGES OF THE INFORMATICS SYSTEM — System’s analysis

In order to compare the obtained results for Neighborhood Search, Hill Climbing and Simulated
Annealing methods, there was implemented an interactive Java application. For object orientated
development of the application, unified modeling language will be used. To achieve UML diagrams was
used the ArgoUML [5] software.

The analysis of an informatics system consists in drawing the use case and activity diagrams [6].
The informatics system will be described in a clear and concise manner by representation of the use-
cases. Each case describes the interaction between the user and the system. The diagram defines the
system’s domain, allowing visualization of the size and scope of the whole developing process. This
diagram includes:
O One actor - the user who is external entity with which the didactic game interacts.
O Nine use cases that describe the functionality of the interactive game.
O Relationships between user and use cases (association relationships), and relationships between use

cases (dependency and generalization relationships).

Resolution using Neighborhood search

< <<extend>>
Resolution of TSP AR
\\ <<include>>

<<extend>>
\ Resolution using Hill Climbing
<<extend>> \

! <<include>> //

Resolution using Simulated Annealin
USER, 9 & ,
/

S~ <<|nclude>>

Meta-Heuristics comparison

<<extend>>
Neighborhood Search simulation
<<extend>>
Hill Climbing simulation
Simulated Annealing simulation

Figure 1. Use Cases Diagram

!

1
I
!
1
1

I <<extend>>

System’s designing

Conceptual modeling allows identifying the most important concepts for the interactive
software. Class diagram [7] is represented in figure 2 in order to be observed the connection mode
between the classes and the interfaces that are used and also the composition and aggregate
relationships between instances.

For memorizing the vertices of the graph has been implemented “Vertex” class. For memorizing
the edges of the graph has been implemented “Edge” class. For memorizing a graph has been
implemented “Graph” class. For memorizing a state configuration, there was implemented “TSPState”
class which implements “State” interface. For memorizing a node of search tree, there was
implemented “TSPNode” class which realizes “Node” interface and for memorizing an expanded node
together with its successors, there was implemented “TSPExpandedNode” class which realizes
“ExpandedNode” interface.

Hill Climbing method is implemented by using “TSPHillClimbing” class which inherit from abstract
class “TSPMetaheuirstic”. Neighborhood Search method is implemented by using
“TSPNeighborhoodSearchMethod” class which inherit from abstract class “TSPMetaheuirstic”.

244 Tome X (Year 2012). Fascicule 3. ISSN 1584 — 2673

ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

Simulated Annealing method is implemented by using “TSPSimulatedAnnealing” class which inherits
from abstract class “TSPMetaheuirstic”. For realizing the window that will compose the graphical
interface of the application and for simulation of Neighborhood Search, Hill Climbing and Simulated
Annealing methods, there were implemented the “TSP” class.
USER INTERFACE

The informatics system is accomplished using the Java programming language [8]. The
application can easily convert in a Java applet.

Vertex Egde Graph
private int x private Vertex n1 private int verticesNumber
private int y private Vertex n2 private int edgesNumber
private int city private int weight private Vector<Vertex> vertices
private Color ¢ private Color ¢ private Vector<Edge> edges
private GeneralPath fig private BasicStroke s private int[][] adjancencyMatrix
public Vertex() private GeneralPath fig public int[][] weightMatrix
public Vertex(int x, int y, int city) public Edge() public Graph()
public Vertex(int x, int y, int city, Color ¢, GeneralPath fig) public Edge(Vertex n1, Vertex n2) public Graph(Vector<Vertex> v, Vector<Edge> e)
public Vertex(Vertex V) public Edge(Vertex n1, Vertex n2, int weight) public Graph(Graph G)
public int getX() public Edge(Vertex n1, Vertex n2, int weight) public int getVerticesNumber()
public int getY() public Edge(Egde E) public int getEdgesNumber()
public int getCity() public Vertex getN1() public Vector<Vertex> getVertices()
public Color getColor() public Vertex getN2() public Vertex getVertex(int i)
public GeneralPath getPath() public int getWeight() public Vector<Edge> getEdges()
public void setX(int x) public Color getColor() public Egde getEdge(int i)
public void setY(int y) public BasicStroke getStroke() public int[][] getAdjancencyMatrix()
public void setCity(int city) public GeneralPath getPath() public int[][] getWeightMatrix()
public void setColor(Color c) public void setN1(Vertex n1) public void setVerticesNumber(int n)
public void setPath(GeneralPath fig) public void setN2(Vertex n2) public void setEdgesNumber(int n)
public boolean coincide(Vertex V) public void setWeight(int w) public void setVertices(Vector<Vertex> V)
public void drawing(Graphics2D g) public void setColor(Color c) public void setVertex(Vertex V, int i)
public void setStroke(BasicStroke s) public void setEdges(Vector<Edge> E)
1 1. 2 .1 public void setPath(GeneralPath fig) public void setEdge(Egde e, int i)
public boolean adjacent(Egde E) public void setAdjancencyMatrix(int[][] A)
public void drawing(Graphics2D g) public void setWeightMatrix(int int[][] W)
—<interface> o~ publ?c boolean connected()
1_ | public boolean complete()
State - B - -
public void drawing(Graphics2D g)
public boolean equal(State O) <<interface>> ;2
public String conversion() N Node , 2
Q public int F(State S1, State Sf) TSPExpandedNode
1 <<realize>> public int G(State S)
! ; public int H(State S) pr!vate TSPNode expanded
TSPState private Vector<TSPNode> succ
e 3 <<realize>> ! public TSPExpandedNode()
TSPNode public TSPExpandedNode(TSPNode n)
public TSPstate() public TSPExpandedNode(TSPExpandedNode n)
public TSPState(Vertex m) private TSPState st public void setExpandedNode(TSPNode n)
public TSPState(TSPState S) private TSPNode predecessor public void setSuccessors(Vector<TSPNode> S)
, |public boolean setCity(Vertex c) pOvare ntl ublic void addSuccessor(TSPNode n)
— Public Vertex getCity() private int g public int getSuccessorsNumber()
public boolean valid() private int h public TSPNode getSuccessor(int i)
public TSPNode() public Vector<TSPNode> getSuccessors()
public TSPNode(TSPState s) public TSPNode getExpanded()
public TSPNode(TSPState s1, TSPState s2) |
TSPHIICImbing public TSPNode(TSPNode N) 1% 1 ? 2.* ' <<realize>>
public void setState(TSPState s) Z
public void setPredecessor(TSPNode p) <<interface>>
public TSPHillClimbing() public void setF(int f) ExpandedNodes
public TSPHillClimbing(Graph gr) PUDliC vo?d SEtG(_int 9) public void successors()
public TSPHillClimbing(TSPHillClimbing H) public void setH(int h)
public Graph HC(Graph G) public TSPState getState()
publ!c TSPNode getiredecessor) abstract TSPMetaheuristic
public int getF()
public int getG() protected int minimumWeight
public int getH() protected Graph gr
protected Graph path
2. 2 L public Graph getGraph()
TSPSimulatedAnnealing public Graph getPath()
private int maxlter <<interface>> public int getMinimumWeight()
private int maxTemp Runnable public void setGraph(Graph gr)
private int acceptedTemp public int weightEvaluation(Graph G)
private float T Z:X abstract public Graph solutionGeneration()
- - - | abstract public Graph initialSolution()
public TSPSimulatedAnnealing() 4 ZAN ! <<realize>> public int weightEvaluation(Graph g)
public TSPSimulatedAnnealing(Graph gr) 1 +
h

12
public TSPSimulatedAnnealing(TSPSimulatedAnnealing S) | 0.*
- | TSP
public int getMaxlter()

public int getMaxTemp()
public int getAcceptedTemp() TSPNeigborhoodSearchMethod

public float getTemperature()
public void setMaxiter(int max)

public void setMaxTemp(int max) public TSPNeighborhoodSearchrMethod()

public void setAcceptedTemp(int acc) public TSPNeighborhoodSearchMethod(Graph gr)

public void setTemperature(float T) public TSPNeighborhoodSearchMethod(TSPNeigborhoodSearchMethod N)
public Graph SA() public Graph NS(Graph G)

Figure 2. Class Diagram
Starting from specified requisites in uses cases diagram (figure 1) it was designed graphical user
interface of the informatics system. The main page of the application contains buttons for selecting the
following options: Neighborhood Search simulation (figure 3), Hill Climbing simulation and Simulated
Annealing simulation.

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 245

ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

= NEIGHBORHOOD SEARCH o=l]

GRAPH DRAWING NEIGHBORHOOD SEARCH FOR TSP

Figure 3. Neigborhood Search for TSP with five cities
EXPERIMENTALS RESULTS
Because one of the objectives of this paper is to compare the efficiency of selected methods, the
presented results have been obtained using each method with the most suitable parameters. In this
experiment the methods are used for a complete TSP, which means that all the cities are directly
connected. Simulations for TSP consisting of different number of cities, varying from 15 to 20, have been
made. Results obtained are collected in table 1 and in figure 4. All the used meta-heuristic methods are

able to fmd an approachmg route Of Opt'ma’ Results given by selected meta-heuristics methods

400

route for a TSP, but Simulated Annealing is the s
most efficient meta-heuristic methods. g ggg ER —

Table 1. Results given by different methods for TSP 2 5 7 s = NS
Number | Meta-heuristics methods £ 200 — HC
of cities | NS HC SA 2 150 Sl

e 100
15 341 364 338 £
16 214 223 223 9 : : : : .
17 245 251 273 15 16 17 18 19 20
18 264 274 272 Cities
19 300 357 349 Figure 4. Graphic of experimental results
20 320 330 330
CONCLUSIONS

All meta-heuristics tested in the paper are very popular optimization techniques. Three
approaches have been selected and simulation studies of their efficiency on the basis on one task, the
traveling salesman problem, have been performed. All experiments show that the best results, from the
point of view of space complexity, as well of time complexity, are produced by Simulated Annealing.

The theme treated in this paper is of very actually, discipline Artificial Intelligence being an
important component in the student formation which studies in the Computer Science domain, but
even in domains related to it.

REFERENCES

[1.] S.Russel, P. Norving, Artificial intelligence — A modern approach, Prentice Hall, 2003

[2.] K. Ahuja, B. James, P. Abraham, A survey of very large-scale neighbourhood search techniques, Discrete
Applied Mathematics 123, 75-102, 2002

[3.] J. Riera-Ledesma, J. Salazar-Gonzalez, A Heuristic approach for the Travelling Purchaser Problem, European
Journal of Operational Research 162, 142-152, 2005

[4.] C. Rego, F. Glover, Local Search and Metaheuristics for the Travelling Salesman Problem, G. Gutin and A.P.
Punnen (eds.), The Travelling Salesman Problem and its Variations., 2002

[5% http://argouml.tigris.org
G. Booch, J. Rumbaugh, 1. Jacobson, The Unified Modeling Language User Guide, Addison Wesley, 1999

[7.] M. Fowler, K. Scott, UML Distilled: A Brief Guide to the Standard Object Modeling Language, Addison Wesley,
Readings MA, USA, 2000

[8.] S. Tdnasd, C. Olaru, S. Andrei, Java de la o la expert, Polirom Press, lasi, 2007

ANNALS OF FACULTY ENGINEERING HUNEDOARA

1 bt R S
CCT | AN
R — INTERNATIONAL JOURNAL OF ENGINEERING

copyright © UNIVERSITY POLITEHNICA TIMISOARA,
FACULTY OF ENGINEERING HUNEDOARA,
5, REVOLUTIEI, 331128, HUNEDOARA, ROMANIA
http://annals.fih.upt.ro

246

Tome X (Year 2012). Fascicule 3. ISSN 1584 — 2673

